Mister Exam

Derivative of tg((2x-4)/x)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
   /2*x - 4\
tan|-------|
   \   x   /
$$\tan{\left(\frac{2 x - 4}{x} \right)}$$
tan((2*x - 4)/x)
Detail solution
  1. Rewrite the function to be differentiated:

  2. Apply the quotient rule, which is:

    and .

    To find :

    1. Let .

    2. The derivative of sine is cosine:

    3. Then, apply the chain rule. Multiply by :

      1. Apply the quotient rule, which is:

        and .

        To find :

        1. Differentiate term by term:

          1. The derivative of the constant is zero.

          2. The derivative of a constant times a function is the constant times the derivative of the function.

            1. Apply the power rule: goes to

            So, the result is:

          The result is:

        To find :

        1. Apply the power rule: goes to

        Now plug in to the quotient rule:

      The result of the chain rule is:

    To find :

    1. Let .

    2. The derivative of cosine is negative sine:

    3. Then, apply the chain rule. Multiply by :

      1. Apply the quotient rule, which is:

        and .

        To find :

        1. Differentiate term by term:

          1. The derivative of the constant is zero.

          2. The derivative of a constant times a function is the constant times the derivative of the function.

            1. Apply the power rule: goes to

            So, the result is:

          The result is:

        To find :

        1. Apply the power rule: goes to

        Now plug in to the quotient rule:

      The result of the chain rule is:

    Now plug in to the quotient rule:

  3. Now simplify:


The answer is:

The graph
The first derivative [src]
/       2/2*x - 4\\ /2   2*x - 4\
|1 + tan |-------||*|- - -------|
\        \   x   // |x       2  |
                    \       x   /
$$\left(\frac{2}{x} - \frac{2 x - 4}{x^{2}}\right) \left(\tan^{2}{\left(\frac{2 x - 4}{x} \right)} + 1\right)$$
The second derivative [src]
  /       2/2*(-2 + x)\\ /    -2 + x\ /       /    -2 + x\    /2*(-2 + x)\\
4*|1 + tan |----------||*|1 - ------|*|-1 + 2*|1 - ------|*tan|----------||
  \        \    x     // \      x   / \       \      x   /    \    x     //
---------------------------------------------------------------------------
                                      2                                    
                                     x                                     
$$\frac{4 \left(1 - \frac{x - 2}{x}\right) \left(2 \left(1 - \frac{x - 2}{x}\right) \tan{\left(\frac{2 \left(x - 2\right)}{x} \right)} - 1\right) \left(\tan^{2}{\left(\frac{2 \left(x - 2\right)}{x} \right)} + 1\right)}{x^{2}}$$
The third derivative [src]
                                      /                                                    2                                        2                 \
  /       2/2*(-2 + x)\\ /    -2 + x\ |       /    -2 + x\    /2*(-2 + x)\     /    -2 + x\  /       2/2*(-2 + x)\\     /    -2 + x\     2/2*(-2 + x)\|
4*|1 + tan |----------||*|1 - ------|*|3 - 12*|1 - ------|*tan|----------| + 4*|1 - ------| *|1 + tan |----------|| + 8*|1 - ------| *tan |----------||
  \        \    x     // \      x   / \       \      x   /    \    x     /     \      x   /  \        \    x     //     \      x   /      \    x     //
-------------------------------------------------------------------------------------------------------------------------------------------------------
                                                                            3                                                                          
                                                                           x                                                                           
$$\frac{4 \left(1 - \frac{x - 2}{x}\right) \left(\tan^{2}{\left(\frac{2 \left(x - 2\right)}{x} \right)} + 1\right) \left(4 \left(1 - \frac{x - 2}{x}\right)^{2} \left(\tan^{2}{\left(\frac{2 \left(x - 2\right)}{x} \right)} + 1\right) + 8 \left(1 - \frac{x - 2}{x}\right)^{2} \tan^{2}{\left(\frac{2 \left(x - 2\right)}{x} \right)} - 12 \left(1 - \frac{x - 2}{x}\right) \tan{\left(\frac{2 \left(x - 2\right)}{x} \right)} + 3\right)}{x^{3}}$$