/2*x - 4\ tan|-------| \ x /
tan((2*x - 4)/x)
Rewrite the function to be differentiated:
Apply the quotient rule, which is:
and .
To find :
Let .
The derivative of sine is cosine:
Then, apply the chain rule. Multiply by :
Apply the quotient rule, which is:
and .
To find :
Differentiate term by term:
The derivative of the constant is zero.
The derivative of a constant times a function is the constant times the derivative of the function.
Apply the power rule: goes to
So, the result is:
The result is:
To find :
Apply the power rule: goes to
Now plug in to the quotient rule:
The result of the chain rule is:
To find :
Let .
The derivative of cosine is negative sine:
Then, apply the chain rule. Multiply by :
Apply the quotient rule, which is:
and .
To find :
Differentiate term by term:
The derivative of the constant is zero.
The derivative of a constant times a function is the constant times the derivative of the function.
Apply the power rule: goes to
So, the result is:
The result is:
To find :
Apply the power rule: goes to
Now plug in to the quotient rule:
The result of the chain rule is:
Now plug in to the quotient rule:
Now simplify:
The answer is:
/ 2/2*x - 4\\ /2 2*x - 4\ |1 + tan |-------||*|- - -------| \ \ x // |x 2 | \ x /
/ 2/2*(-2 + x)\\ / -2 + x\ / / -2 + x\ /2*(-2 + x)\\ 4*|1 + tan |----------||*|1 - ------|*|-1 + 2*|1 - ------|*tan|----------|| \ \ x // \ x / \ \ x / \ x // --------------------------------------------------------------------------- 2 x
/ 2 2 \ / 2/2*(-2 + x)\\ / -2 + x\ | / -2 + x\ /2*(-2 + x)\ / -2 + x\ / 2/2*(-2 + x)\\ / -2 + x\ 2/2*(-2 + x)\| 4*|1 + tan |----------||*|1 - ------|*|3 - 12*|1 - ------|*tan|----------| + 4*|1 - ------| *|1 + tan |----------|| + 8*|1 - ------| *tan |----------|| \ \ x // \ x / \ \ x / \ x / \ x / \ \ x // \ x / \ x // ------------------------------------------------------------------------------------------------------------------------------------------------------- 3 x