Mister Exam

Derivative of tg2^sqrt(x)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
          ___
        \/ x 
(tan(2))     
$$\tan^{\sqrt{x}}{\left(2 \right)}$$
tan(2)^(sqrt(x))
Detail solution
  1. Let .

  2. Then, apply the chain rule. Multiply by :

    1. Apply the power rule: goes to

    The result of the chain rule is:


The answer is:

The graph
The first derivative [src]
          ___                      
        \/ x                       
(tan(2))     *(pi*I + log(-tan(2)))
-----------------------------------
                  ___              
              2*\/ x               
$$\frac{\left(\log{\left(- \tan{\left(2 \right)} \right)} + i \pi\right) \tan^{\sqrt{x}}{\left(2 \right)}}{2 \sqrt{x}}$$
The second derivative [src]
          ___                                                     
        \/ x  /   1     pi*I + log(-tan(2))\                      
(tan(2))     *|- ---- + -------------------|*(pi*I + log(-tan(2)))
              |   3/2            x         |                      
              \  x                         /                      
------------------------------------------------------------------
                                4                                 
$$\frac{\left(\frac{\log{\left(- \tan{\left(2 \right)} \right)} + i \pi}{x} - \frac{1}{x^{\frac{3}{2}}}\right) \left(\log{\left(- \tan{\left(2 \right)} \right)} + i \pi\right) \tan^{\sqrt{x}}{\left(2 \right)}}{4}$$
The third derivative [src]
          ___                       /                            2                          \
        \/ x                        | 3     (pi*I + log(-tan(2)))    3*(pi*I + log(-tan(2)))|
(tan(2))     *(pi*I + log(-tan(2)))*|---- + ---------------------- - -----------------------|
                                    | 5/2             3/2                        2          |
                                    \x               x                          x           /
---------------------------------------------------------------------------------------------
                                              8                                              
$$\frac{\left(\log{\left(- \tan{\left(2 \right)} \right)} + i \pi\right) \left(- \frac{3 \left(\log{\left(- \tan{\left(2 \right)} \right)} + i \pi\right)}{x^{2}} + \frac{\left(\log{\left(- \tan{\left(2 \right)} \right)} + i \pi\right)^{2}}{x^{\frac{3}{2}}} + \frac{3}{x^{\frac{5}{2}}}\right) \tan^{\sqrt{x}}{\left(2 \right)}}{8}$$