Mister Exam

Other calculators

Derivative of 10x-ln(x+10)^10

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
          10        
10*x - log  (x + 10)
10xlog(x+10)1010 x - \log{\left(x + 10 \right)}^{10}
10*x - log(x + 10)^10
Detail solution
  1. Differentiate 10xlog(x+10)1010 x - \log{\left(x + 10 \right)}^{10} term by term:

    1. The derivative of a constant times a function is the constant times the derivative of the function.

      1. Apply the power rule: xx goes to 11

      So, the result is: 1010

    2. The derivative of a constant times a function is the constant times the derivative of the function.

      1. Let u=log(x+10)u = \log{\left(x + 10 \right)}.

      2. Apply the power rule: u10u^{10} goes to 10u910 u^{9}

      3. Then, apply the chain rule. Multiply by ddxlog(x+10)\frac{d}{d x} \log{\left(x + 10 \right)}:

        1. Let u=x+10u = x + 10.

        2. The derivative of log(u)\log{\left(u \right)} is 1u\frac{1}{u}.

        3. Then, apply the chain rule. Multiply by ddx(x+10)\frac{d}{d x} \left(x + 10\right):

          1. Differentiate x+10x + 10 term by term:

            1. Apply the power rule: xx goes to 11

            2. The derivative of the constant 1010 is zero.

            The result is: 11

          The result of the chain rule is:

          1x+10\frac{1}{x + 10}

        The result of the chain rule is:

        10log(x+10)9x+10\frac{10 \log{\left(x + 10 \right)}^{9}}{x + 10}

      So, the result is: 10log(x+10)9x+10- \frac{10 \log{\left(x + 10 \right)}^{9}}{x + 10}

    The result is: 1010log(x+10)9x+1010 - \frac{10 \log{\left(x + 10 \right)}^{9}}{x + 10}

  2. Now simplify:

    10(xlog(x+10)9+10)x+10\frac{10 \left(x - \log{\left(x + 10 \right)}^{9} + 10\right)}{x + 10}


The answer is:

10(xlog(x+10)9+10)x+10\frac{10 \left(x - \log{\left(x + 10 \right)}^{9} + 10\right)}{x + 10}

The first derivative [src]
           9        
     10*log (x + 10)
10 - ---------------
          x + 10    
1010log(x+10)9x+1010 - \frac{10 \log{\left(x + 10 \right)}^{9}}{x + 10}
The second derivative [src]
      8                           
10*log (10 + x)*(-9 + log(10 + x))
----------------------------------
                    2             
            (10 + x)              
10(log(x+10)9)log(x+10)8(x+10)2\frac{10 \left(\log{\left(x + 10 \right)} - 9\right) \log{\left(x + 10 \right)}^{8}}{\left(x + 10\right)^{2}}
The third derivative [src]
      7         /           2                         \
10*log (10 + x)*\-72 - 2*log (10 + x) + 27*log(10 + x)/
-------------------------------------------------------
                               3                       
                       (10 + x)                        
10(2log(x+10)2+27log(x+10)72)log(x+10)7(x+10)3\frac{10 \left(- 2 \log{\left(x + 10 \right)}^{2} + 27 \log{\left(x + 10 \right)} - 72\right) \log{\left(x + 10 \right)}^{7}}{\left(x + 10\right)^{3}}