Mister Exam

Other calculators

Derivative of tan(x^2)csc(x^2)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
   / 2\    / 2\
tan\x /*csc\x /
$$\tan{\left(x^{2} \right)} \csc{\left(x^{2} \right)}$$
tan(x^2)*csc(x^2)
Detail solution
  1. Apply the product rule:

    ; to find :

    1. Rewrite the function to be differentiated:

    2. Apply the quotient rule, which is:

      and .

      To find :

      1. Let .

      2. The derivative of sine is cosine:

      3. Then, apply the chain rule. Multiply by :

        1. Apply the power rule: goes to

        The result of the chain rule is:

      To find :

      1. Let .

      2. The derivative of cosine is negative sine:

      3. Then, apply the chain rule. Multiply by :

        1. Apply the power rule: goes to

        The result of the chain rule is:

      Now plug in to the quotient rule:

    ; to find :

    1. Rewrite the function to be differentiated:

    2. Let .

    3. Apply the power rule: goes to

    4. Then, apply the chain rule. Multiply by :

      1. Let .

      2. The derivative of sine is cosine:

      3. Then, apply the chain rule. Multiply by :

        1. Apply the power rule: goes to

        The result of the chain rule is:

      The result of the chain rule is:

    The result is:

  2. Now simplify:


The answer is:

The graph
The first derivative [src]
    /       2/ 2\\    / 2\          / 2\    / 2\    / 2\
2*x*\1 + tan \x //*csc\x / - 2*x*cot\x /*csc\x /*tan\x /
$$2 x \left(\tan^{2}{\left(x^{2} \right)} + 1\right) \csc{\left(x^{2} \right)} - 2 x \tan{\left(x^{2} \right)} \cot{\left(x^{2} \right)} \csc{\left(x^{2} \right)}$$
The second derivative [src]
  /       2/ 2\   /     / 2\      2    2/ 2\      2 /       2/ 2\\\    / 2\      2 /       2/ 2\\    / 2\      2 /       2/ 2\\    / 2\\    / 2\
2*\1 + tan \x / + \- cot\x / + 2*x *cot \x / + 2*x *\1 + cot \x ///*tan\x / - 4*x *\1 + tan \x //*cot\x / + 4*x *\1 + tan \x //*tan\x //*csc\x /
$$2 \left(4 x^{2} \left(\tan^{2}{\left(x^{2} \right)} + 1\right) \tan{\left(x^{2} \right)} - 4 x^{2} \left(\tan^{2}{\left(x^{2} \right)} + 1\right) \cot{\left(x^{2} \right)} + \left(2 x^{2} \left(\cot^{2}{\left(x^{2} \right)} + 1\right) + 2 x^{2} \cot^{2}{\left(x^{2} \right)} - \cot{\left(x^{2} \right)}\right) \tan{\left(x^{2} \right)} + \tan^{2}{\left(x^{2} \right)} + 1\right) \csc{\left(x^{2} \right)}$$
The third derivative [src]
    /  /          2/ 2\      2    3/ 2\       2 /       2/ 2\\    / 2\\    / 2\     /       2/ 2\      2 /       2/ 2\\    / 2\\    / 2\     /       2/ 2\\ /     / 2\      2 /       2/ 2\\      2    2/ 2\\     /       2/ 2\\ /     / 2\      2    2/ 2\      2 /       2/ 2\\\\    / 2\
4*x*\- \-3 - 6*cot \x / + 2*x *cot \x / + 10*x *\1 + cot \x //*cot\x //*tan\x / - 3*\1 + tan \x / + 4*x *\1 + tan \x //*tan\x //*cot\x / + 2*\1 + tan \x //*\3*tan\x / + 2*x *\1 + tan \x // + 4*x *tan \x // + 3*\1 + tan \x //*\- cot\x / + 2*x *cot \x / + 2*x *\1 + cot \x ////*csc\x /
$$4 x \left(2 \left(\tan^{2}{\left(x^{2} \right)} + 1\right) \left(2 x^{2} \left(\tan^{2}{\left(x^{2} \right)} + 1\right) + 4 x^{2} \tan^{2}{\left(x^{2} \right)} + 3 \tan{\left(x^{2} \right)}\right) + 3 \left(\tan^{2}{\left(x^{2} \right)} + 1\right) \left(2 x^{2} \left(\cot^{2}{\left(x^{2} \right)} + 1\right) + 2 x^{2} \cot^{2}{\left(x^{2} \right)} - \cot{\left(x^{2} \right)}\right) - 3 \left(4 x^{2} \left(\tan^{2}{\left(x^{2} \right)} + 1\right) \tan{\left(x^{2} \right)} + \tan^{2}{\left(x^{2} \right)} + 1\right) \cot{\left(x^{2} \right)} - \left(10 x^{2} \left(\cot^{2}{\left(x^{2} \right)} + 1\right) \cot{\left(x^{2} \right)} + 2 x^{2} \cot^{3}{\left(x^{2} \right)} - 6 \cot^{2}{\left(x^{2} \right)} - 3\right) \tan{\left(x^{2} \right)}\right) \csc{\left(x^{2} \right)}$$