Rewrite the function to be differentiated:
Apply the quotient rule, which is:
and .
To find :
Let .
The derivative of sine is cosine:
Then, apply the chain rule. Multiply by :
Apply the power rule: goes to
The result of the chain rule is:
To find :
Let .
The derivative of cosine is negative sine:
Then, apply the chain rule. Multiply by :
Apply the power rule: goes to
The result of the chain rule is:
Now plug in to the quotient rule:
Now simplify:
The answer is:
7 / 2/ 8\\ 8*x *\1 + tan \x //
6 / 2/ 8\\ / 8 / 8\\ 8*x *\1 + tan \x //*\7 + 16*x *tan\x //
/ 2 4 3 2 4 2 3 2 3 2 3 2 \
| 2/ 8\ 16 / 2/ 8\\ 48 / 2/ 8\\ 32 / 2/ 8\\ 8 / 2/ 8\\ / 8\ 56 7/ 8\ / 2/ 8\\ 16 2/ 8\ / 2/ 8\\ 48 6/ 8\ / 2/ 8\\ 24 3/ 8\ / 2/ 8\\ 40 5/ 8\ / 2/ 8\\ 56 / 2/ 8\\ 5/ 8\ 56 / 2/ 8\\ / 8\ 32 4/ 8\ / 2/ 8\\ 24 / 2/ 8\\ / 8\ 56 / 2/ 8\\ 3/ 8\ 48 / 2/ 8\\ 4/ 8\ 40 / 2/ 8\\ / 8\ 32 / 2/ 8\\ 2/ 8\ 48 / 2/ 8\\ 2/ 8\ 40 / 2/ 8\\ 3/ 8\|
128*\315 + 315*tan \x / + 73170720*x *\1 + tan \x // + 873463808*x *\1 + tan \x // + 1324646400*x *\1 + tan \x // + 4053420*x *\1 + tan \x //*tan\x / + 16777216*x *tan \x /*\1 + tan \x // + 146341440*x *tan \x /*\1 + tan \x // + 205520896*x *tan \x /*\1 + tan \x // + 803631360*x *tan \x /*\1 + tan \x // + 828506112*x *tan \x /*\1 + tan \x // + 1006632960*x *\1 + tan \x // *tan \x / + 1040187392*x *\1 + tan \x // *tan\x / + 1324646400*x *tan \x /*\1 + tan \x // + 1607262720*x *\1 + tan \x // *tan\x / + 3221225472*x *\1 + tan \x // *tan \x / + 5857345536*x *\1 + tan \x // *tan \x / + 7042301952*x *\1 + tan \x // *tan\x / + 7285555200*x *\1 + tan \x // *tan \x / + 9248440320*x *\1 + tan \x // *tan \x / + 10770579456*x *\1 + tan \x // *tan \x //
5 / 2/ 8\\ / 16 / 2/ 8\\ 16 2/ 8\ 8 / 8\\ 16*x *\1 + tan \x //*\21 + 64*x *\1 + tan \x // + 128*x *tan \x / + 168*x *tan\x //