Mister Exam

Derivative of tan(xsin(x))

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
tan(x*sin(x))
$$\tan{\left(x \sin{\left(x \right)} \right)}$$
tan(x*sin(x))
Detail solution
  1. Rewrite the function to be differentiated:

  2. Apply the quotient rule, which is:

    and .

    To find :

    1. Let .

    2. The derivative of sine is cosine:

    3. Then, apply the chain rule. Multiply by :

      1. Apply the product rule:

        ; to find :

        1. Apply the power rule: goes to

        ; to find :

        1. The derivative of sine is cosine:

        The result is:

      The result of the chain rule is:

    To find :

    1. Let .

    2. The derivative of cosine is negative sine:

    3. Then, apply the chain rule. Multiply by :

      1. Apply the product rule:

        ; to find :

        1. Apply the power rule: goes to

        ; to find :

        1. The derivative of sine is cosine:

        The result is:

      The result of the chain rule is:

    Now plug in to the quotient rule:

  3. Now simplify:


The answer is:

The graph
The first derivative [src]
/       2          \                    
\1 + tan (x*sin(x))/*(x*cos(x) + sin(x))
$$\left(x \cos{\left(x \right)} + \sin{\left(x \right)}\right) \left(\tan^{2}{\left(x \sin{\left(x \right)} \right)} + 1\right)$$
The second derivative [src]
/       2          \ /                                           2              \
\1 + tan (x*sin(x))/*\2*cos(x) - x*sin(x) + 2*(x*cos(x) + sin(x)) *tan(x*sin(x))/
$$\left(\tan^{2}{\left(x \sin{\left(x \right)} \right)} + 1\right) \left(- x \sin{\left(x \right)} + 2 \left(x \cos{\left(x \right)} + \sin{\left(x \right)}\right)^{2} \tan{\left(x \sin{\left(x \right)} \right)} + 2 \cos{\left(x \right)}\right)$$
The third derivative [src]
/       2          \ /                                            3 /       2          \                        3    2                                                                       \
\1 + tan (x*sin(x))/*\-3*sin(x) - x*cos(x) + 2*(x*cos(x) + sin(x)) *\1 + tan (x*sin(x))/ + 4*(x*cos(x) + sin(x)) *tan (x*sin(x)) - 6*(-2*cos(x) + x*sin(x))*(x*cos(x) + sin(x))*tan(x*sin(x))/
$$\left(\tan^{2}{\left(x \sin{\left(x \right)} \right)} + 1\right) \left(- x \cos{\left(x \right)} - 6 \left(x \sin{\left(x \right)} - 2 \cos{\left(x \right)}\right) \left(x \cos{\left(x \right)} + \sin{\left(x \right)}\right) \tan{\left(x \sin{\left(x \right)} \right)} + 2 \left(x \cos{\left(x \right)} + \sin{\left(x \right)}\right)^{3} \left(\tan^{2}{\left(x \sin{\left(x \right)} \right)} + 1\right) + 4 \left(x \cos{\left(x \right)} + \sin{\left(x \right)}\right)^{3} \tan^{2}{\left(x \sin{\left(x \right)} \right)} - 3 \sin{\left(x \right)}\right)$$