Detail solution
-
Rewrite the function to be differentiated:
-
Apply the quotient rule, which is:
and .
To find :
-
Let .
-
The derivative of sine is cosine:
-
Then, apply the chain rule. Multiply by :
-
Apply the product rule:
; to find :
-
Apply the power rule: goes to
; to find :
-
The derivative of sine is cosine:
The result is:
The result of the chain rule is:
To find :
-
Let .
-
The derivative of cosine is negative sine:
-
Then, apply the chain rule. Multiply by :
-
Apply the product rule:
; to find :
-
Apply the power rule: goes to
; to find :
-
The derivative of sine is cosine:
The result is:
The result of the chain rule is:
Now plug in to the quotient rule:
Now simplify:
The answer is:
The first derivative
[src]
/ 2 \
\1 + tan (x*sin(x))/*(x*cos(x) + sin(x))
$$\left(x \cos{\left(x \right)} + \sin{\left(x \right)}\right) \left(\tan^{2}{\left(x \sin{\left(x \right)} \right)} + 1\right)$$
The second derivative
[src]
/ 2 \ / 2 \
\1 + tan (x*sin(x))/*\2*cos(x) - x*sin(x) + 2*(x*cos(x) + sin(x)) *tan(x*sin(x))/
$$\left(\tan^{2}{\left(x \sin{\left(x \right)} \right)} + 1\right) \left(- x \sin{\left(x \right)} + 2 \left(x \cos{\left(x \right)} + \sin{\left(x \right)}\right)^{2} \tan{\left(x \sin{\left(x \right)} \right)} + 2 \cos{\left(x \right)}\right)$$
The third derivative
[src]
/ 2 \ / 3 / 2 \ 3 2 \
\1 + tan (x*sin(x))/*\-3*sin(x) - x*cos(x) + 2*(x*cos(x) + sin(x)) *\1 + tan (x*sin(x))/ + 4*(x*cos(x) + sin(x)) *tan (x*sin(x)) - 6*(-2*cos(x) + x*sin(x))*(x*cos(x) + sin(x))*tan(x*sin(x))/
$$\left(\tan^{2}{\left(x \sin{\left(x \right)} \right)} + 1\right) \left(- x \cos{\left(x \right)} - 6 \left(x \sin{\left(x \right)} - 2 \cos{\left(x \right)}\right) \left(x \cos{\left(x \right)} + \sin{\left(x \right)}\right) \tan{\left(x \sin{\left(x \right)} \right)} + 2 \left(x \cos{\left(x \right)} + \sin{\left(x \right)}\right)^{3} \left(\tan^{2}{\left(x \sin{\left(x \right)} \right)} + 1\right) + 4 \left(x \cos{\left(x \right)} + \sin{\left(x \right)}\right)^{3} \tan^{2}{\left(x \sin{\left(x \right)} \right)} - 3 \sin{\left(x \right)}\right)$$