Mister Exam

Derivative of arctanx(sinx+2)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
atan(x)*(sin(x) + 2)
$$\left(\sin{\left(x \right)} + 2\right) \operatorname{atan}{\left(x \right)}$$
atan(x)*(sin(x) + 2)
The graph
The first derivative [src]
sin(x) + 2                 
---------- + atan(x)*cos(x)
       2                   
  1 + x                    
$$\cos{\left(x \right)} \operatorname{atan}{\left(x \right)} + \frac{\sin{\left(x \right)} + 2}{x^{2} + 1}$$
The second derivative [src]
                  2*cos(x)   2*x*(2 + sin(x))
-atan(x)*sin(x) + -------- - ----------------
                        2               2    
                   1 + x        /     2\     
                                \1 + x /     
$$- \frac{2 x \left(\sin{\left(x \right)} + 2\right)}{\left(x^{2} + 1\right)^{2}} - \sin{\left(x \right)} \operatorname{atan}{\left(x \right)} + \frac{2 \cos{\left(x \right)}}{x^{2} + 1}$$
The third derivative [src]
                                            /         2 \             
                                            |      4*x  |             
                                          2*|-1 + ------|*(2 + sin(x))
                                            |          2|             
                  3*sin(x)   6*x*cos(x)     \     1 + x /             
-atan(x)*cos(x) - -------- - ---------- + ----------------------------
                        2            2                     2          
                   1 + x     /     2\              /     2\           
                             \1 + x /              \1 + x /           
$$- \frac{6 x \cos{\left(x \right)}}{\left(x^{2} + 1\right)^{2}} - \cos{\left(x \right)} \operatorname{atan}{\left(x \right)} - \frac{3 \sin{\left(x \right)}}{x^{2} + 1} + \frac{2 \left(\frac{4 x^{2}}{x^{2} + 1} - 1\right) \left(\sin{\left(x \right)} + 2\right)}{\left(x^{2} + 1\right)^{2}}$$