/ x\ tan\2 /*log(3*x)
tan(2^x)*log(3*x)
Apply the product rule:
; to find :
Rewrite the function to be differentiated:
Apply the quotient rule, which is:
and .
To find :
Let .
The derivative of sine is cosine:
Then, apply the chain rule. Multiply by :
The result of the chain rule is:
To find :
Let .
The derivative of cosine is negative sine:
Then, apply the chain rule. Multiply by :
The result of the chain rule is:
Now plug in to the quotient rule:
; to find :
Let .
The derivative of is .
Then, apply the chain rule. Multiply by :
The derivative of a constant times a function is the constant times the derivative of the function.
Apply the power rule: goes to
So, the result is:
The result of the chain rule is:
The result is:
Now simplify:
The answer is:
/ x\ tan\2 / x / 2/ x\\ ------- + 2 *\1 + tan \2 //*log(2)*log(3*x) x
/ x\ x / 2/ x\\ tan\2 / 2*2 *\1 + tan \2 //*log(2) x 2 / 2/ x\\ / x / x\\ - ------- + -------------------------- + 2 *log (2)*\1 + tan \2 //*\1 + 2*2 *tan\2 //*log(3*x) 2 x x
/ x\ x / 2/ x\\ x 2 / 2/ x\\ / x / x\\ 2*tan\2 / 3*2 *\1 + tan \2 //*log(2) x 3 / 2/ x\\ / 2*x / 2/ x\\ 2*x 2/ x\ x / x\\ 3*2 *log (2)*\1 + tan \2 //*\1 + 2*2 *tan\2 // --------- - -------------------------- + 2 *log (2)*\1 + tan \2 //*\1 + 2*2 *\1 + tan \2 // + 4*2 *tan \2 / + 6*2 *tan\2 //*log(3*x) + ---------------------------------------------- 3 2 x x x