Mister Exam

Derivative of tan(2^x)ln(3x)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
   / x\         
tan\2 /*log(3*x)
$$\log{\left(3 x \right)} \tan{\left(2^{x} \right)}$$
tan(2^x)*log(3*x)
Detail solution
  1. Apply the product rule:

    ; to find :

    1. Rewrite the function to be differentiated:

    2. Apply the quotient rule, which is:

      and .

      To find :

      1. Let .

      2. The derivative of sine is cosine:

      3. Then, apply the chain rule. Multiply by :

        The result of the chain rule is:

      To find :

      1. Let .

      2. The derivative of cosine is negative sine:

      3. Then, apply the chain rule. Multiply by :

        The result of the chain rule is:

      Now plug in to the quotient rule:

    ; to find :

    1. Let .

    2. The derivative of is .

    3. Then, apply the chain rule. Multiply by :

      1. The derivative of a constant times a function is the constant times the derivative of the function.

        1. Apply the power rule: goes to

        So, the result is:

      The result of the chain rule is:

    The result is:

  2. Now simplify:


The answer is:

The graph
The first derivative [src]
   / x\                                    
tan\2 /    x /       2/ x\\                
------- + 2 *\1 + tan \2 //*log(2)*log(3*x)
   x                                       
$$2^{x} \left(\tan^{2}{\left(2^{x} \right)} + 1\right) \log{\left(2 \right)} \log{\left(3 x \right)} + \frac{\tan{\left(2^{x} \right)}}{x}$$
The second derivative [src]
     / x\      x /       2/ x\\                                                               
  tan\2 /   2*2 *\1 + tan \2 //*log(2)    x    2    /       2/ x\\ /       x    / x\\         
- ------- + -------------------------- + 2 *log (2)*\1 + tan \2 //*\1 + 2*2 *tan\2 //*log(3*x)
      2                 x                                                                     
     x                                                                                        
$$2^{x} \left(2 \cdot 2^{x} \tan{\left(2^{x} \right)} + 1\right) \left(\tan^{2}{\left(2^{x} \right)} + 1\right) \log{\left(2 \right)}^{2} \log{\left(3 x \right)} + \frac{2 \cdot 2^{x} \left(\tan^{2}{\left(2^{x} \right)} + 1\right) \log{\left(2 \right)}}{x} - \frac{\tan{\left(2^{x} \right)}}{x^{2}}$$
The third derivative [src]
     / x\      x /       2/ x\\                                                                                                               x    2    /       2/ x\\ /       x    / x\\
2*tan\2 /   3*2 *\1 + tan \2 //*log(2)    x    3    /       2/ x\\ /       2*x /       2/ x\\      2*x    2/ x\      x    / x\\            3*2 *log (2)*\1 + tan \2 //*\1 + 2*2 *tan\2 //
--------- - -------------------------- + 2 *log (2)*\1 + tan \2 //*\1 + 2*2   *\1 + tan \2 // + 4*2   *tan \2 / + 6*2 *tan\2 //*log(3*x) + ----------------------------------------------
     3                   2                                                                                                                                       x                       
    x                   x                                                                                                                                                                
$$2^{x} \left(\tan^{2}{\left(2^{x} \right)} + 1\right) \left(2 \cdot 2^{2 x} \left(\tan^{2}{\left(2^{x} \right)} + 1\right) + 4 \cdot 2^{2 x} \tan^{2}{\left(2^{x} \right)} + 6 \cdot 2^{x} \tan{\left(2^{x} \right)} + 1\right) \log{\left(2 \right)}^{3} \log{\left(3 x \right)} + \frac{3 \cdot 2^{x} \left(2 \cdot 2^{x} \tan{\left(2^{x} \right)} + 1\right) \left(\tan^{2}{\left(2^{x} \right)} + 1\right) \log{\left(2 \right)}^{2}}{x} - \frac{3 \cdot 2^{x} \left(\tan^{2}{\left(2^{x} \right)} + 1\right) \log{\left(2 \right)}}{x^{2}} + \frac{2 \tan{\left(2^{x} \right)}}{x^{3}}$$