Mister Exam

Other calculators

Derivative of tan(2*x)/(x+1)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
tan(2*x)
--------
 x + 1  
$$\frac{\tan{\left(2 x \right)}}{x + 1}$$
tan(2*x)/(x + 1)
Detail solution
  1. Apply the quotient rule, which is:

    and .

    To find :

    1. Rewrite the function to be differentiated:

    2. Apply the quotient rule, which is:

      and .

      To find :

      1. Let .

      2. The derivative of sine is cosine:

      3. Then, apply the chain rule. Multiply by :

        1. The derivative of a constant times a function is the constant times the derivative of the function.

          1. Apply the power rule: goes to

          So, the result is:

        The result of the chain rule is:

      To find :

      1. Let .

      2. The derivative of cosine is negative sine:

      3. Then, apply the chain rule. Multiply by :

        1. The derivative of a constant times a function is the constant times the derivative of the function.

          1. Apply the power rule: goes to

          So, the result is:

        The result of the chain rule is:

      Now plug in to the quotient rule:

    To find :

    1. Differentiate term by term:

      1. The derivative of the constant is zero.

      2. Apply the power rule: goes to

      The result is:

    Now plug in to the quotient rule:

  2. Now simplify:


The answer is:

The graph
The first derivative [src]
         2                
2 + 2*tan (2*x)   tan(2*x)
--------------- - --------
     x + 1               2
                  (x + 1) 
$$\frac{2 \tan^{2}{\left(2 x \right)} + 2}{x + 1} - \frac{\tan{\left(2 x \right)}}{\left(x + 1\right)^{2}}$$
The second derivative [src]
  /             /       2     \                             \
  |tan(2*x)   2*\1 + tan (2*x)/     /       2     \         |
2*|-------- - ----------------- + 4*\1 + tan (2*x)/*tan(2*x)|
  |       2         1 + x                                   |
  \(1 + x)                                                  /
-------------------------------------------------------------
                            1 + x                            
$$\frac{2 \left(4 \left(\tan^{2}{\left(2 x \right)} + 1\right) \tan{\left(2 x \right)} - \frac{2 \left(\tan^{2}{\left(2 x \right)} + 1\right)}{x + 1} + \frac{\tan{\left(2 x \right)}}{\left(x + 1\right)^{2}}\right)}{x + 1}$$
The third derivative [src]
  /                 /       2     \                                            /       2     \         \
  |  3*tan(2*x)   6*\1 + tan (2*x)/     /       2     \ /         2     \   12*\1 + tan (2*x)/*tan(2*x)|
2*|- ---------- + ----------------- + 8*\1 + tan (2*x)/*\1 + 3*tan (2*x)/ - ---------------------------|
  |          3                2                                                        1 + x           |
  \   (1 + x)          (1 + x)                                                                         /
--------------------------------------------------------------------------------------------------------
                                                 1 + x                                                  
$$\frac{2 \left(8 \left(\tan^{2}{\left(2 x \right)} + 1\right) \left(3 \tan^{2}{\left(2 x \right)} + 1\right) - \frac{12 \left(\tan^{2}{\left(2 x \right)} + 1\right) \tan{\left(2 x \right)}}{x + 1} + \frac{6 \left(\tan^{2}{\left(2 x \right)} + 1\right)}{\left(x + 1\right)^{2}} - \frac{3 \tan{\left(2 x \right)}}{\left(x + 1\right)^{3}}\right)}{x + 1}$$