___ \/ x *(2*sin(x) + 1)
sqrt(x)*(2*sin(x) + 1)
Apply the product rule:
; to find :
Apply the power rule: goes to
; to find :
Differentiate term by term:
The derivative of a constant times a function is the constant times the derivative of the function.
The derivative of sine is cosine:
So, the result is:
The derivative of the constant is zero.
The result is:
The result is:
Now simplify:
The answer is:
2*sin(x) + 1 ___
------------ + 2*\/ x *cos(x)
___
2*\/ x
___ 2*cos(x) 1 + 2*sin(x)
- 2*\/ x *sin(x) + -------- - ------------
___ 3/2
\/ x 4*x
3*sin(x) ___ 3*cos(x) 3*(1 + 2*sin(x))
- -------- - 2*\/ x *cos(x) - -------- + ----------------
___ 3/2 5/2
\/ x 2*x 8*x