Mister Exam

Other calculators


sqrt(x)*(2*sin(x)+1)

Derivative of sqrt(x)*(2*sin(x)+1)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  ___               
\/ x *(2*sin(x) + 1)
$$\sqrt{x} \left(2 \sin{\left(x \right)} + 1\right)$$
sqrt(x)*(2*sin(x) + 1)
Detail solution
  1. Apply the product rule:

    ; to find :

    1. Apply the power rule: goes to

    ; to find :

    1. Differentiate term by term:

      1. The derivative of a constant times a function is the constant times the derivative of the function.

        1. The derivative of sine is cosine:

        So, the result is:

      2. The derivative of the constant is zero.

      The result is:

    The result is:

  2. Now simplify:


The answer is:

The graph
The first derivative [src]
2*sin(x) + 1       ___       
------------ + 2*\/ x *cos(x)
      ___                    
  2*\/ x                     
$$2 \sqrt{x} \cos{\left(x \right)} + \frac{2 \sin{\left(x \right)} + 1}{2 \sqrt{x}}$$
The second derivative [src]
      ___          2*cos(x)   1 + 2*sin(x)
- 2*\/ x *sin(x) + -------- - ------------
                      ___           3/2   
                    \/ x         4*x      
$$- 2 \sqrt{x} \sin{\left(x \right)} + \frac{2 \cos{\left(x \right)}}{\sqrt{x}} - \frac{2 \sin{\left(x \right)} + 1}{4 x^{\frac{3}{2}}}$$
The third derivative [src]
  3*sin(x)       ___          3*cos(x)   3*(1 + 2*sin(x))
- -------- - 2*\/ x *cos(x) - -------- + ----------------
     ___                          3/2            5/2     
   \/ x                        2*x            8*x        
$$- 2 \sqrt{x} \cos{\left(x \right)} - \frac{3 \sin{\left(x \right)}}{\sqrt{x}} - \frac{3 \cos{\left(x \right)}}{2 x^{\frac{3}{2}}} + \frac{3 \left(2 \sin{\left(x \right)} + 1\right)}{8 x^{\frac{5}{2}}}$$
The graph
Derivative of sqrt(x)*(2*sin(x)+1)