1 ------------------- _________________ \/ tan(cos(E)*c*x)
1/(sqrt(tan((cos(E)*c)*x)))
Let .
Apply the power rule: goes to
Then, apply the chain rule. Multiply by :
Let .
Apply the power rule: goes to
Then, apply the chain rule. Multiply by :
Rewrite the function to be differentiated:
Apply the quotient rule, which is:
and .
To find :
Let .
The derivative of sine is cosine:
Then, apply the chain rule. Multiply by :
The derivative of a constant times a function is the constant times the derivative of the function.
Apply the power rule: goes to
So, the result is:
The result of the chain rule is:
To find :
Let .
The derivative of cosine is negative sine:
Then, apply the chain rule. Multiply by :
The derivative of a constant times a function is the constant times the derivative of the function.
Apply the power rule: goes to
So, the result is:
The result of the chain rule is:
Now plug in to the quotient rule:
The result of the chain rule is:
The result of the chain rule is:
Now simplify:
The answer is:
/ 2 \ -c*\1 + tan (cos(E)*c*x)/*cos(E) ------------------------------------- _________________ 2*tan(cos(E)*c*x)*\/ tan(cos(E)*c*x)
/ / 2 \\ 2 2 / 2 \ | 3*\1 + tan (c*x*cos(E))/| c *cos (E)*\1 + tan (c*x*cos(E))/*|-1 + ------------------------| | 2 | \ 4*tan (c*x*cos(E)) / ----------------------------------------------------------------- _________________ \/ tan(c*x*cos(E))
/ 2 \ | / 2 \ / 2 \| 3 3 / 2 \ | _________________ 15*\1 + tan (c*x*cos(E))/ 7*\1 + tan (c*x*cos(E))/| c *cos (E)*\1 + tan (c*x*cos(E))/*|- 2*\/ tan(c*x*cos(E)) - -------------------------- + ------------------------| | 7/2 3/2 | \ 8*tan (c*x*cos(E)) 2*tan (c*x*cos(E)) /