Mister Exam

Other calculators

Derivative of [√tan^-1(cosecx)]

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
         1         
-------------------
  _________________
\/ tan(cos(E)*c*x) 
1tan(xccos(e))\frac{1}{\sqrt{\tan{\left(x c \cos{\left(e \right)} \right)}}}
1/(sqrt(tan((cos(E)*c)*x)))
Detail solution
  1. Let u=tan(xccos(e))u = \sqrt{\tan{\left(x c \cos{\left(e \right)} \right)}}.

  2. Apply the power rule: 1u\frac{1}{u} goes to 1u2- \frac{1}{u^{2}}

  3. Then, apply the chain rule. Multiply by xtan(xccos(e))\frac{\partial}{\partial x} \sqrt{\tan{\left(x c \cos{\left(e \right)} \right)}}:

    1. Let u=tan(xccos(e))u = \tan{\left(x c \cos{\left(e \right)} \right)}.

    2. Apply the power rule: u\sqrt{u} goes to 12u\frac{1}{2 \sqrt{u}}

    3. Then, apply the chain rule. Multiply by xtan(xccos(e))\frac{\partial}{\partial x} \tan{\left(x c \cos{\left(e \right)} \right)}:

      1. Rewrite the function to be differentiated:

        tan(xccos(e))=sin(xccos(e))cos(xccos(e))\tan{\left(x c \cos{\left(e \right)} \right)} = \frac{\sin{\left(x c \cos{\left(e \right)} \right)}}{\cos{\left(x c \cos{\left(e \right)} \right)}}

      2. Apply the quotient rule, which is:

        ddxf(x)g(x)=f(x)ddxg(x)+g(x)ddxf(x)g2(x)\frac{d}{d x} \frac{f{\left(x \right)}}{g{\left(x \right)}} = \frac{- f{\left(x \right)} \frac{d}{d x} g{\left(x \right)} + g{\left(x \right)} \frac{d}{d x} f{\left(x \right)}}{g^{2}{\left(x \right)}}

        f(x)=sin(xccos(e))f{\left(x \right)} = \sin{\left(x c \cos{\left(e \right)} \right)} and g(x)=cos(xccos(e))g{\left(x \right)} = \cos{\left(x c \cos{\left(e \right)} \right)}.

        To find ddxf(x)\frac{d}{d x} f{\left(x \right)}:

        1. Let u=xccos(e)u = x c \cos{\left(e \right)}.

        2. The derivative of sine is cosine:

          ddusin(u)=cos(u)\frac{d}{d u} \sin{\left(u \right)} = \cos{\left(u \right)}

        3. Then, apply the chain rule. Multiply by xxccos(e)\frac{\partial}{\partial x} x c \cos{\left(e \right)}:

          1. The derivative of a constant times a function is the constant times the derivative of the function.

            1. Apply the power rule: xx goes to 11

            So, the result is: ccos(e)c \cos{\left(e \right)}

          The result of the chain rule is:

          ccos(e)cos(xccos(e))c \cos{\left(e \right)} \cos{\left(x c \cos{\left(e \right)} \right)}

        To find ddxg(x)\frac{d}{d x} g{\left(x \right)}:

        1. Let u=xccos(e)u = x c \cos{\left(e \right)}.

        2. The derivative of cosine is negative sine:

          dducos(u)=sin(u)\frac{d}{d u} \cos{\left(u \right)} = - \sin{\left(u \right)}

        3. Then, apply the chain rule. Multiply by xxccos(e)\frac{\partial}{\partial x} x c \cos{\left(e \right)}:

          1. The derivative of a constant times a function is the constant times the derivative of the function.

            1. Apply the power rule: xx goes to 11

            So, the result is: ccos(e)c \cos{\left(e \right)}

          The result of the chain rule is:

          csin(xccos(e))cos(e)- c \sin{\left(x c \cos{\left(e \right)} \right)} \cos{\left(e \right)}

        Now plug in to the quotient rule:

        csin2(xccos(e))cos(e)+ccos(e)cos2(xccos(e))cos2(xccos(e))\frac{c \sin^{2}{\left(x c \cos{\left(e \right)} \right)} \cos{\left(e \right)} + c \cos{\left(e \right)} \cos^{2}{\left(x c \cos{\left(e \right)} \right)}}{\cos^{2}{\left(x c \cos{\left(e \right)} \right)}}

      The result of the chain rule is:

      csin2(xccos(e))cos(e)+ccos(e)cos2(xccos(e))2cos2(xccos(e))tan(xccos(e))\frac{c \sin^{2}{\left(x c \cos{\left(e \right)} \right)} \cos{\left(e \right)} + c \cos{\left(e \right)} \cos^{2}{\left(x c \cos{\left(e \right)} \right)}}{2 \cos^{2}{\left(x c \cos{\left(e \right)} \right)} \sqrt{\tan{\left(x c \cos{\left(e \right)} \right)}}}

    The result of the chain rule is:

    csin2(xccos(e))cos(e)+ccos(e)cos2(xccos(e))2cos2(xccos(e))tan32(xccos(e))- \frac{c \sin^{2}{\left(x c \cos{\left(e \right)} \right)} \cos{\left(e \right)} + c \cos{\left(e \right)} \cos^{2}{\left(x c \cos{\left(e \right)} \right)}}{2 \cos^{2}{\left(x c \cos{\left(e \right)} \right)} \tan^{\frac{3}{2}}{\left(x c \cos{\left(e \right)} \right)}}

  4. Now simplify:

    ccos(e)2cos2(cxcos(e))tan32(cxcos(e))- \frac{c \cos{\left(e \right)}}{2 \cos^{2}{\left(c x \cos{\left(e \right)} \right)} \tan^{\frac{3}{2}}{\left(c x \cos{\left(e \right)} \right)}}


The answer is:

ccos(e)2cos2(cxcos(e))tan32(cxcos(e))- \frac{c \cos{\left(e \right)}}{2 \cos^{2}{\left(c x \cos{\left(e \right)} \right)} \tan^{\frac{3}{2}}{\left(c x \cos{\left(e \right)} \right)}}

The first derivative [src]
     /       2            \          
  -c*\1 + tan (cos(E)*c*x)/*cos(E)   
-------------------------------------
                    _________________
2*tan(cos(E)*c*x)*\/ tan(cos(E)*c*x) 
c(tan2(xccos(e))+1)cos(e)2tan(xccos(e))tan(xccos(e))- \frac{c \left(\tan^{2}{\left(x c \cos{\left(e \right)} \right)} + 1\right) \cos{\left(e \right)}}{2 \sqrt{\tan{\left(x c \cos{\left(e \right)} \right)}} \tan{\left(x c \cos{\left(e \right)} \right)}}
The second derivative [src]
                                  /       /       2            \\
 2    2    /       2            \ |     3*\1 + tan (c*x*cos(E))/|
c *cos (E)*\1 + tan (c*x*cos(E))/*|-1 + ------------------------|
                                  |             2               |
                                  \        4*tan (c*x*cos(E))   /
-----------------------------------------------------------------
                         _________________                       
                       \/ tan(c*x*cos(E))                        
c2(3(tan2(cxcos(e))+1)4tan2(cxcos(e))1)(tan2(cxcos(e))+1)cos2(e)tan(cxcos(e))\frac{c^{2} \left(\frac{3 \left(\tan^{2}{\left(c x \cos{\left(e \right)} \right)} + 1\right)}{4 \tan^{2}{\left(c x \cos{\left(e \right)} \right)}} - 1\right) \left(\tan^{2}{\left(c x \cos{\left(e \right)} \right)} + 1\right) \cos^{2}{\left(e \right)}}{\sqrt{\tan{\left(c x \cos{\left(e \right)} \right)}}}
The third derivative [src]
                                  /                                                   2                           \
                                  |                             /       2            \      /       2            \|
 3    3    /       2            \ |      _________________   15*\1 + tan (c*x*cos(E))/    7*\1 + tan (c*x*cos(E))/|
c *cos (E)*\1 + tan (c*x*cos(E))/*|- 2*\/ tan(c*x*cos(E))  - -------------------------- + ------------------------|
                                  |                                  7/2                         3/2              |
                                  \                             8*tan   (c*x*cos(E))        2*tan   (c*x*cos(E))  /
c3(tan2(cxcos(e))+1)(15(tan2(cxcos(e))+1)28tan72(cxcos(e))+7(tan2(cxcos(e))+1)2tan32(cxcos(e))2tan(cxcos(e)))cos3(e)c^{3} \left(\tan^{2}{\left(c x \cos{\left(e \right)} \right)} + 1\right) \left(- \frac{15 \left(\tan^{2}{\left(c x \cos{\left(e \right)} \right)} + 1\right)^{2}}{8 \tan^{\frac{7}{2}}{\left(c x \cos{\left(e \right)} \right)}} + \frac{7 \left(\tan^{2}{\left(c x \cos{\left(e \right)} \right)} + 1\right)}{2 \tan^{\frac{3}{2}}{\left(c x \cos{\left(e \right)} \right)}} - 2 \sqrt{\tan{\left(c x \cos{\left(e \right)} \right)}}\right) \cos^{3}{\left(e \right)}