Mister Exam

Other calculators

Derivative of [√tan^-1(cosecx)]

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
         1         
-------------------
  _________________
\/ tan(cos(E)*c*x) 
$$\frac{1}{\sqrt{\tan{\left(x c \cos{\left(e \right)} \right)}}}$$
1/(sqrt(tan((cos(E)*c)*x)))
Detail solution
  1. Let .

  2. Apply the power rule: goes to

  3. Then, apply the chain rule. Multiply by :

    1. Let .

    2. Apply the power rule: goes to

    3. Then, apply the chain rule. Multiply by :

      1. Rewrite the function to be differentiated:

      2. Apply the quotient rule, which is:

        and .

        To find :

        1. Let .

        2. The derivative of sine is cosine:

        3. Then, apply the chain rule. Multiply by :

          1. The derivative of a constant times a function is the constant times the derivative of the function.

            1. Apply the power rule: goes to

            So, the result is:

          The result of the chain rule is:

        To find :

        1. Let .

        2. The derivative of cosine is negative sine:

        3. Then, apply the chain rule. Multiply by :

          1. The derivative of a constant times a function is the constant times the derivative of the function.

            1. Apply the power rule: goes to

            So, the result is:

          The result of the chain rule is:

        Now plug in to the quotient rule:

      The result of the chain rule is:

    The result of the chain rule is:

  4. Now simplify:


The answer is:

The first derivative [src]
     /       2            \          
  -c*\1 + tan (cos(E)*c*x)/*cos(E)   
-------------------------------------
                    _________________
2*tan(cos(E)*c*x)*\/ tan(cos(E)*c*x) 
$$- \frac{c \left(\tan^{2}{\left(x c \cos{\left(e \right)} \right)} + 1\right) \cos{\left(e \right)}}{2 \sqrt{\tan{\left(x c \cos{\left(e \right)} \right)}} \tan{\left(x c \cos{\left(e \right)} \right)}}$$
The second derivative [src]
                                  /       /       2            \\
 2    2    /       2            \ |     3*\1 + tan (c*x*cos(E))/|
c *cos (E)*\1 + tan (c*x*cos(E))/*|-1 + ------------------------|
                                  |             2               |
                                  \        4*tan (c*x*cos(E))   /
-----------------------------------------------------------------
                         _________________                       
                       \/ tan(c*x*cos(E))                        
$$\frac{c^{2} \left(\frac{3 \left(\tan^{2}{\left(c x \cos{\left(e \right)} \right)} + 1\right)}{4 \tan^{2}{\left(c x \cos{\left(e \right)} \right)}} - 1\right) \left(\tan^{2}{\left(c x \cos{\left(e \right)} \right)} + 1\right) \cos^{2}{\left(e \right)}}{\sqrt{\tan{\left(c x \cos{\left(e \right)} \right)}}}$$
The third derivative [src]
                                  /                                                   2                           \
                                  |                             /       2            \      /       2            \|
 3    3    /       2            \ |      _________________   15*\1 + tan (c*x*cos(E))/    7*\1 + tan (c*x*cos(E))/|
c *cos (E)*\1 + tan (c*x*cos(E))/*|- 2*\/ tan(c*x*cos(E))  - -------------------------- + ------------------------|
                                  |                                  7/2                         3/2              |
                                  \                             8*tan   (c*x*cos(E))        2*tan   (c*x*cos(E))  /
$$c^{3} \left(\tan^{2}{\left(c x \cos{\left(e \right)} \right)} + 1\right) \left(- \frac{15 \left(\tan^{2}{\left(c x \cos{\left(e \right)} \right)} + 1\right)^{2}}{8 \tan^{\frac{7}{2}}{\left(c x \cos{\left(e \right)} \right)}} + \frac{7 \left(\tan^{2}{\left(c x \cos{\left(e \right)} \right)} + 1\right)}{2 \tan^{\frac{3}{2}}{\left(c x \cos{\left(e \right)} \right)}} - 2 \sqrt{\tan{\left(c x \cos{\left(e \right)} \right)}}\right) \cos^{3}{\left(e \right)}$$