Mister Exam

Other calculators


tan(7x^2-5)

Derivative of tan(7x^2-5)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
   /   2    \
tan\7*x  - 5/
tan(7x25)\tan{\left(7 x^{2} - 5 \right)}
d /   /   2    \\
--\tan\7*x  - 5//
dx               
ddxtan(7x25)\frac{d}{d x} \tan{\left(7 x^{2} - 5 \right)}
Detail solution
  1. Rewrite the function to be differentiated:

    tan(7x25)=sin(7x25)cos(7x25)\tan{\left(7 x^{2} - 5 \right)} = \frac{\sin{\left(7 x^{2} - 5 \right)}}{\cos{\left(7 x^{2} - 5 \right)}}

  2. Apply the quotient rule, which is:

    ddxf(x)g(x)=f(x)ddxg(x)+g(x)ddxf(x)g2(x)\frac{d}{d x} \frac{f{\left(x \right)}}{g{\left(x \right)}} = \frac{- f{\left(x \right)} \frac{d}{d x} g{\left(x \right)} + g{\left(x \right)} \frac{d}{d x} f{\left(x \right)}}{g^{2}{\left(x \right)}}

    f(x)=sin(7x25)f{\left(x \right)} = \sin{\left(7 x^{2} - 5 \right)} and g(x)=cos(7x25)g{\left(x \right)} = \cos{\left(7 x^{2} - 5 \right)}.

    To find ddxf(x)\frac{d}{d x} f{\left(x \right)}:

    1. Let u=7x25u = 7 x^{2} - 5.

    2. The derivative of sine is cosine:

      ddusin(u)=cos(u)\frac{d}{d u} \sin{\left(u \right)} = \cos{\left(u \right)}

    3. Then, apply the chain rule. Multiply by ddx(7x25)\frac{d}{d x} \left(7 x^{2} - 5\right):

      1. Differentiate 7x257 x^{2} - 5 term by term:

        1. The derivative of a constant times a function is the constant times the derivative of the function.

          1. Apply the power rule: x2x^{2} goes to 2x2 x

          So, the result is: 14x14 x

        2. The derivative of the constant (1)5\left(-1\right) 5 is zero.

        The result is: 14x14 x

      The result of the chain rule is:

      14xcos(7x25)14 x \cos{\left(7 x^{2} - 5 \right)}

    To find ddxg(x)\frac{d}{d x} g{\left(x \right)}:

    1. Let u=7x25u = 7 x^{2} - 5.

    2. The derivative of cosine is negative sine:

      dducos(u)=sin(u)\frac{d}{d u} \cos{\left(u \right)} = - \sin{\left(u \right)}

    3. Then, apply the chain rule. Multiply by ddx(7x25)\frac{d}{d x} \left(7 x^{2} - 5\right):

      1. Differentiate 7x257 x^{2} - 5 term by term:

        1. The derivative of a constant times a function is the constant times the derivative of the function.

          1. Apply the power rule: x2x^{2} goes to 2x2 x

          So, the result is: 14x14 x

        2. The derivative of the constant (1)5\left(-1\right) 5 is zero.

        The result is: 14x14 x

      The result of the chain rule is:

      14xsin(7x25)- 14 x \sin{\left(7 x^{2} - 5 \right)}

    Now plug in to the quotient rule:

    14xsin2(7x25)+14xcos2(7x25)cos2(7x25)\frac{14 x \sin^{2}{\left(7 x^{2} - 5 \right)} + 14 x \cos^{2}{\left(7 x^{2} - 5 \right)}}{\cos^{2}{\left(7 x^{2} - 5 \right)}}

  3. Now simplify:

    14xcos2(7x25)\frac{14 x}{\cos^{2}{\left(7 x^{2} - 5 \right)}}


The answer is:

14xcos2(7x25)\frac{14 x}{\cos^{2}{\left(7 x^{2} - 5 \right)}}

The graph
02468-8-6-4-2-1010-100000100000
The first derivative [src]
     /       2/   2    \\
14*x*\1 + tan \7*x  - 5//
14x(tan2(7x25)+1)14 x \left(\tan^{2}{\left(7 x^{2} - 5 \right)} + 1\right)
The second derivative [src]
   /       2/        2\       2 /       2/        2\\    /        2\\
14*\1 + tan \-5 + 7*x / + 28*x *\1 + tan \-5 + 7*x //*tan\-5 + 7*x //
14(28x2(tan2(7x25)+1)tan(7x25)+tan2(7x25)+1)14 \cdot \left(28 x^{2} \left(\tan^{2}{\left(7 x^{2} - 5 \right)} + 1\right) \tan{\left(7 x^{2} - 5 \right)} + \tan^{2}{\left(7 x^{2} - 5 \right)} + 1\right)
The third derivative [src]
      /       2/        2\\ /     /        2\       2 /       2/        2\\       2    2/        2\\
392*x*\1 + tan \-5 + 7*x //*\3*tan\-5 + 7*x / + 14*x *\1 + tan \-5 + 7*x // + 28*x *tan \-5 + 7*x //
392x(tan2(7x25)+1)(14x2(tan2(7x25)+1)+28x2tan2(7x25)+3tan(7x25))392 x \left(\tan^{2}{\left(7 x^{2} - 5 \right)} + 1\right) \left(14 x^{2} \left(\tan^{2}{\left(7 x^{2} - 5 \right)} + 1\right) + 28 x^{2} \tan^{2}{\left(7 x^{2} - 5 \right)} + 3 \tan{\left(7 x^{2} - 5 \right)}\right)
The graph
Derivative of tan(7x^2-5)