Mister Exam

Other calculators


sqrt(x^3-1)

Derivative of sqrt(x^3-1)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
   ________
  /  3     
\/  x  - 1 
$$\sqrt{x^{3} - 1}$$
sqrt(x^3 - 1)
Detail solution
  1. Let .

  2. Apply the power rule: goes to

  3. Then, apply the chain rule. Multiply by :

    1. Differentiate term by term:

      1. Apply the power rule: goes to

      2. The derivative of the constant is zero.

      The result is:

    The result of the chain rule is:

  4. Now simplify:


The answer is:

The graph
The first derivative [src]
        2    
     3*x     
-------------
     ________
    /  3     
2*\/  x  - 1 
$$\frac{3 x^{2}}{2 \sqrt{x^{3} - 1}}$$
The second derivative [src]
    /           3   \
    |        3*x    |
3*x*|1 - -----------|
    |      /      3\|
    \    4*\-1 + x //
---------------------
        _________    
       /       3     
     \/  -1 + x      
$$\frac{3 x \left(- \frac{3 x^{3}}{4 \left(x^{3} - 1\right)} + 1\right)}{\sqrt{x^{3} - 1}}$$
The third derivative [src]
  /           3             6    \
  |        9*x          27*x     |
3*|1 - ----------- + ------------|
  |      /      3\              2|
  |    2*\-1 + x /     /      3\ |
  \                  8*\-1 + x / /
----------------------------------
              _________           
             /       3            
           \/  -1 + x             
$$\frac{3 \left(\frac{27 x^{6}}{8 \left(x^{3} - 1\right)^{2}} - \frac{9 x^{3}}{2 \left(x^{3} - 1\right)} + 1\right)}{\sqrt{x^{3} - 1}}$$
The graph
Derivative of sqrt(x^3-1)