Mister Exam

Derivative of sqrt(x)*tan(x)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  ___       
\/ x *tan(x)
$$\sqrt{x} \tan{\left(x \right)}$$
sqrt(x)*tan(x)
Detail solution
  1. Apply the product rule:

    ; to find :

    1. Apply the power rule: goes to

    ; to find :

    1. Rewrite the function to be differentiated:

    2. Apply the quotient rule, which is:

      and .

      To find :

      1. The derivative of sine is cosine:

      To find :

      1. The derivative of cosine is negative sine:

      Now plug in to the quotient rule:

    The result is:

  2. Now simplify:


The answer is:

The graph
The first derivative [src]
  ___ /       2   \    tan(x)
\/ x *\1 + tan (x)/ + -------
                          ___
                      2*\/ x 
$$\sqrt{x} \left(\tan^{2}{\left(x \right)} + 1\right) + \frac{\tan{\left(x \right)}}{2 \sqrt{x}}$$
The second derivative [src]
       2                                           
1 + tan (x)   tan(x)       ___ /       2   \       
----------- - ------ + 2*\/ x *\1 + tan (x)/*tan(x)
     ___         3/2                               
   \/ x       4*x                                  
$$2 \sqrt{x} \left(\tan^{2}{\left(x \right)} + 1\right) \tan{\left(x \right)} + \frac{\tan^{2}{\left(x \right)} + 1}{\sqrt{x}} - \frac{\tan{\left(x \right)}}{4 x^{\frac{3}{2}}}$$
The third derivative [src]
    /       2   \                                                        /       2   \       
  3*\1 + tan (x)/   3*tan(x)       ___ /       2   \ /         2   \   3*\1 + tan (x)/*tan(x)
- --------------- + -------- + 2*\/ x *\1 + tan (x)/*\1 + 3*tan (x)/ + ----------------------
          3/2           5/2                                                      ___         
       4*x           8*x                                                       \/ x          
$$2 \sqrt{x} \left(\tan^{2}{\left(x \right)} + 1\right) \left(3 \tan^{2}{\left(x \right)} + 1\right) + \frac{3 \left(\tan^{2}{\left(x \right)} + 1\right) \tan{\left(x \right)}}{\sqrt{x}} - \frac{3 \left(\tan^{2}{\left(x \right)} + 1\right)}{4 x^{\frac{3}{2}}} + \frac{3 \tan{\left(x \right)}}{8 x^{\frac{5}{2}}}$$
The graph
Derivative of sqrt(x)*tan(x)