Mister Exam

Other calculators


sqrt*x(tan(x)-1)

Derivative of sqrt*x(tan(x)-1)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  ___             
\/ x *(tan(x) - 1)
$$\sqrt{x} \left(\tan{\left(x \right)} - 1\right)$$
d /  ___             \
--\\/ x *(tan(x) - 1)/
dx                    
$$\frac{d}{d x} \sqrt{x} \left(\tan{\left(x \right)} - 1\right)$$
Detail solution
  1. Apply the product rule:

    ; to find :

    1. Apply the power rule: goes to

    ; to find :

    1. Differentiate term by term:

      1. Rewrite the function to be differentiated:

      2. Apply the quotient rule, which is:

        and .

        To find :

        1. The derivative of sine is cosine:

        To find :

        1. The derivative of cosine is negative sine:

        Now plug in to the quotient rule:

      3. The derivative of the constant is zero.

      The result is:

    The result is:

  2. Now simplify:


The answer is:

The graph
The first derivative [src]
  ___ /       2   \   tan(x) - 1
\/ x *\1 + tan (x)/ + ----------
                           ___  
                       2*\/ x   
$$\sqrt{x} \left(\tan^{2}{\left(x \right)} + 1\right) + \frac{\tan{\left(x \right)} - 1}{2 \sqrt{x}}$$
The second derivative [src]
       2                                                
1 + tan (x)   -1 + tan(x)       ___ /       2   \       
----------- - ----------- + 2*\/ x *\1 + tan (x)/*tan(x)
     ___            3/2                                 
   \/ x          4*x                                    
$$2 \sqrt{x} \left(\tan^{2}{\left(x \right)} + 1\right) \tan{\left(x \right)} + \frac{\tan^{2}{\left(x \right)} + 1}{\sqrt{x}} - \frac{\tan{\left(x \right)} - 1}{4 x^{\frac{3}{2}}}$$
The third derivative [src]
    /       2   \                                                               /       2   \       
  3*\1 + tan (x)/   3*(-1 + tan(x))       ___ /       2   \ /         2   \   3*\1 + tan (x)/*tan(x)
- --------------- + --------------- + 2*\/ x *\1 + tan (x)/*\1 + 3*tan (x)/ + ----------------------
          3/2               5/2                                                         ___         
       4*x               8*x                                                          \/ x          
$$2 \sqrt{x} \left(\tan^{2}{\left(x \right)} + 1\right) \left(3 \tan^{2}{\left(x \right)} + 1\right) + \frac{3 \left(\tan^{2}{\left(x \right)} + 1\right) \tan{\left(x \right)}}{\sqrt{x}} - \frac{3 \left(\tan^{2}{\left(x \right)} + 1\right)}{4 x^{\frac{3}{2}}} + \frac{3 \left(\tan{\left(x \right)} - 1\right)}{8 x^{\frac{5}{2}}}$$
The graph
Derivative of sqrt*x(tan(x)-1)