Mister Exam

Derivative of sqrt(x)*exp(-x)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  ___  -x
\/ x *e  
$$\sqrt{x} e^{- x}$$
sqrt(x)*exp(-x)
Detail solution
  1. Apply the quotient rule, which is:

    and .

    To find :

    1. Apply the power rule: goes to

    To find :

    1. The derivative of is itself.

    Now plug in to the quotient rule:

  2. Now simplify:


The answer is:

The graph
The first derivative [src]
   -x              
  e         ___  -x
------- - \/ x *e  
    ___            
2*\/ x             
$$- \sqrt{x} e^{- x} + \frac{e^{- x}}{2 \sqrt{x}}$$
The second derivative [src]
/  ___     1       1   \  -x
|\/ x  - ----- - ------|*e  
|          ___      3/2|    
\        \/ x    4*x   /    
$$\left(\sqrt{x} - \frac{1}{\sqrt{x}} - \frac{1}{4 x^{\frac{3}{2}}}\right) e^{- x}$$
The third derivative [src]
/    ___      3        3        3   \  -x
|- \/ x  + ------- + ------ + ------|*e  
|              ___      3/2      5/2|    
\          2*\/ x    4*x      8*x   /    
$$\left(- \sqrt{x} + \frac{3}{2 \sqrt{x}} + \frac{3}{4 x^{\frac{3}{2}}} + \frac{3}{8 x^{\frac{5}{2}}}\right) e^{- x}$$
4-я производная [src]
/  ___     2        15       3        3   \  -x
|\/ x  - ----- - ------- - ------ - ------|*e  
|          ___       7/2      5/2      3/2|    
\        \/ x    16*x      2*x      2*x   /    
$$\left(\sqrt{x} - \frac{2}{\sqrt{x}} - \frac{3}{2 x^{\frac{3}{2}}} - \frac{3}{2 x^{\frac{5}{2}}} - \frac{15}{16 x^{\frac{7}{2}}}\right) e^{- x}$$