Detail solution
-
Apply the quotient rule, which is:
and .
To find :
-
Apply the power rule: goes to
To find :
-
The derivative of is itself.
Now plug in to the quotient rule:
-
Now simplify:
The answer is:
The first derivative
[src]
-x
e ___ -x
------- - \/ x *e
___
2*\/ x
$$- \sqrt{x} e^{- x} + \frac{e^{- x}}{2 \sqrt{x}}$$
The second derivative
[src]
/ ___ 1 1 \ -x
|\/ x - ----- - ------|*e
| ___ 3/2|
\ \/ x 4*x /
$$\left(\sqrt{x} - \frac{1}{\sqrt{x}} - \frac{1}{4 x^{\frac{3}{2}}}\right) e^{- x}$$
The third derivative
[src]
/ ___ 3 3 3 \ -x
|- \/ x + ------- + ------ + ------|*e
| ___ 3/2 5/2|
\ 2*\/ x 4*x 8*x /
$$\left(- \sqrt{x} + \frac{3}{2 \sqrt{x}} + \frac{3}{4 x^{\frac{3}{2}}} + \frac{3}{8 x^{\frac{5}{2}}}\right) e^{- x}$$
/ ___ 2 15 3 3 \ -x
|\/ x - ----- - ------- - ------ - ------|*e
| ___ 7/2 5/2 3/2|
\ \/ x 16*x 2*x 2*x /
$$\left(\sqrt{x} - \frac{2}{\sqrt{x}} - \frac{3}{2 x^{\frac{3}{2}}} - \frac{3}{2 x^{\frac{5}{2}}} - \frac{15}{16 x^{\frac{7}{2}}}\right) e^{- x}$$