_________________ \/ (x - 3)*(x + 3)
sqrt((x - 3)*(x + 3))
Let .
Apply the power rule: goes to
Then, apply the chain rule. Multiply by :
Apply the product rule:
; to find :
Differentiate term by term:
Apply the power rule: goes to
The derivative of the constant is zero.
The result is:
; to find :
Differentiate term by term:
Apply the power rule: goes to
The derivative of the constant is zero.
The result is:
The result is:
The result of the chain rule is:
Now simplify:
The answer is:
_________________ x*\/ (x - 3)*(x + 3) --------------------- (x - 3)*(x + 3)
/ 2 \ __________________ | x x x | \/ (-3 + x)*(3 + x) *|1 - ------ - ----- + ----------------| \ -3 + x 3 + x (-3 + x)*(3 + x)/ ------------------------------------------------------------ (-3 + x)*(3 + x)
/ 3 2 2 \ __________________ | 2 2 2*x 2*x x 3*x 3*x 5*x | \/ (-3 + x)*(3 + x) *|- ------ - ----- + --------- + -------- + ------------------ - ----------------- - ----------------- + ----------------| | -3 + x 3 + x 2 2 2 2 2 2 (-3 + x)*(3 + x)| \ (-3 + x) (3 + x) (-3 + x) *(3 + x) (-3 + x)*(3 + x) (-3 + x) *(3 + x) / ---------------------------------------------------------------------------------------------------------------------------------------------- (-3 + x)*(3 + x)