Mister Exam

Derivative of sqrt(x)/(x+2)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  ___
\/ x 
-----
x + 2
$$\frac{\sqrt{x}}{x + 2}$$
  /  ___\
d |\/ x |
--|-----|
dx\x + 2/
$$\frac{d}{d x} \frac{\sqrt{x}}{x + 2}$$
Detail solution
  1. Apply the quotient rule, which is:

    and .

    To find :

    1. Apply the power rule: goes to

    To find :

    1. Differentiate term by term:

      1. The derivative of the constant is zero.

      2. Apply the power rule: goes to

      The result is:

    Now plug in to the quotient rule:

  2. Now simplify:


The answer is:

The graph
The first derivative [src]
                     ___  
       1           \/ x   
--------------- - --------
    ___                  2
2*\/ x *(x + 2)   (x + 2) 
$$- \frac{\sqrt{x}}{\left(x + 2\right)^{2}} + \frac{1}{2 \sqrt{x} \left(x + 2\right)}$$
The second derivative [src]
                               ___ 
    1            1         2*\/ x  
- ------ - ------------- + --------
     3/2     ___                  2
  4*x      \/ x *(2 + x)   (2 + x) 
-----------------------------------
               2 + x               
$$\frac{\frac{2 \sqrt{x}}{\left(x + 2\right)^{2}} - \frac{1}{\sqrt{x} \left(x + 2\right)} - \frac{1}{4 x^{\frac{3}{2}}}}{x + 2}$$
The third derivative [src]
  /                              ___                  \
  |  1            1          2*\/ x           1       |
3*|------ + -------------- - -------- + --------------|
  |   5/2     ___        2          3      3/2        |
  \8*x      \/ x *(2 + x)    (2 + x)    4*x   *(2 + x)/
-------------------------------------------------------
                         2 + x                         
$$\frac{3 \left(- \frac{2 \sqrt{x}}{\left(x + 2\right)^{3}} + \frac{1}{\sqrt{x} \left(x + 2\right)^{2}} + \frac{1}{4 x^{\frac{3}{2}} \left(x + 2\right)} + \frac{1}{8 x^{\frac{5}{2}}}\right)}{x + 2}$$
The graph
Derivative of sqrt(x)/(x+2)