Mister Exam

Other calculators


ln(x^2-2x)

Derivative of ln(x^2-2x)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
   / 2      \
log\x  - 2*x/
$$\log{\left(x^{2} - 2 x \right)}$$
log(x^2 - 2*x)
Detail solution
  1. Let .

  2. The derivative of is .

  3. Then, apply the chain rule. Multiply by :

    1. Differentiate term by term:

      1. Apply the power rule: goes to

      2. The derivative of a constant times a function is the constant times the derivative of the function.

        1. Apply the power rule: goes to

        So, the result is:

      The result is:

    The result of the chain rule is:

  4. Now simplify:


The answer is:

The graph
The first derivative [src]
-2 + 2*x
--------
 2      
x  - 2*x
$$\frac{2 x - 2}{x^{2} - 2 x}$$
The second derivative [src]
  /              2\
  |    2*(-1 + x) |
2*|1 - -----------|
  \     x*(-2 + x)/
-------------------
     x*(-2 + x)    
$$\frac{2 \left(1 - \frac{2 \left(x - 1\right)^{2}}{x \left(x - 2\right)}\right)}{x \left(x - 2\right)}$$
The third derivative [src]
           /               2\
           |     4*(-1 + x) |
4*(-1 + x)*|-3 + -----------|
           \      x*(-2 + x)/
-----------------------------
          2         2        
         x *(-2 + x)         
$$\frac{4 \left(-3 + \frac{4 \left(x - 1\right)^{2}}{x \left(x - 2\right)}\right) \left(x - 1\right)}{x^{2} \left(x - 2\right)^{2}}$$
The graph
Derivative of ln(x^2-2x)