Mister Exam

Other calculators


sqrt(2^2+(0.04x^2))

Derivative of sqrt(2^2+(0.04x^2))

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
     _________
    /       2 
   /   2   x  
  /   2  + -- 
\/         25 
$$\sqrt{\frac{x^{2}}{25} + 2^{2}}$$
  /     _________\
  |    /       2 |
d |   /   2   x  |
--|  /   2  + -- |
dx\\/         25 /
$$\frac{d}{d x} \sqrt{\frac{x^{2}}{25} + 2^{2}}$$
Detail solution
  1. Let .

  2. Apply the power rule: goes to

  3. Then, apply the chain rule. Multiply by :

    1. Differentiate term by term:

      1. The derivative of the constant is zero.

      2. The derivative of a constant times a function is the constant times the derivative of the function.

        1. Apply the power rule: goes to

        So, the result is:

      The result is:

    The result of the chain rule is:

  4. Now simplify:


The answer is:

The graph
The first derivative [src]
        x        
-----------------
        _________
       /       2 
      /   2   x  
25*  /   2  + -- 
   \/         25 
$$\frac{x}{25 \sqrt{\frac{x^{2}}{25} + 2^{2}}}$$
The second derivative [src]
           2     
          x      
   25 - ------   
             2   
            x    
        4 + --   
            25   
-----------------
         ________
        /      2 
       /      x  
625*  /   4 + -- 
    \/        25 
$$\frac{- \frac{x^{2}}{\frac{x^{2}}{25} + 4} + 25}{625 \sqrt{\frac{x^{2}}{25} + 4}}$$
The third derivative [src]
    /         2  \
    |        x   |
3*x*|-25 + ------|
    |           2|
    |          x |
    |      4 + --|
    \          25/
------------------
              3/2 
      /     2\    
      |    x |    
15625*|4 + --|    
      \    25/    
$$\frac{3 x \left(\frac{x^{2}}{\frac{x^{2}}{25} + 4} - 25\right)}{15625 \left(\frac{x^{2}}{25} + 4\right)^{\frac{3}{2}}}$$
The graph
Derivative of sqrt(2^2+(0.04x^2))