Mister Exam

Derivative of log((a+x)/(a-x))

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
   /a + x\
log|-----|
   \a - x/
$$\log{\left(\frac{a + x}{a - x} \right)}$$
log((a + x)/(a - x))
Detail solution
  1. Let .

  2. The derivative of is .

  3. Then, apply the chain rule. Multiply by :

    1. Apply the quotient rule, which is:

      and .

      To find :

      1. Differentiate term by term:

        1. The derivative of the constant is zero.

        2. Apply the power rule: goes to

        The result is:

      To find :

      1. Differentiate term by term:

        1. The derivative of the constant is zero.

        2. The derivative of a constant times a function is the constant times the derivative of the function.

          1. Apply the power rule: goes to

          So, the result is:

        The result is:

      Now plug in to the quotient rule:

    The result of the chain rule is:


The answer is:

The first derivative [src]
        /  1      a + x  \
(a - x)*|----- + --------|
        |a - x          2|
        \        (a - x) /
--------------------------
          a + x           
$$\frac{\left(a - x\right) \left(\frac{1}{a - x} + \frac{a + x}{\left(a - x\right)^{2}}\right)}{a + x}$$
The second derivative [src]
/    a + x\ /  1       1  \
|1 + -----|*|----- - -----|
\    a - x/ \a - x   a + x/
---------------------------
           a + x           
$$\frac{\left(1 + \frac{a + x}{a - x}\right) \left(- \frac{1}{a + x} + \frac{1}{a - x}\right)}{a + x}$$
The third derivative [src]
  /    a + x\ /   1          1              1       \
2*|1 + -----|*|-------- + -------- - ---------------|
  \    a - x/ |       2          2   (a + x)*(a - x)|
              \(a + x)    (a - x)                   /
-----------------------------------------------------
                        a + x                        
$$\frac{2 \left(1 + \frac{a + x}{a - x}\right) \left(\frac{1}{\left(a + x\right)^{2}} - \frac{1}{\left(a - x\right) \left(a + x\right)} + \frac{1}{\left(a - x\right)^{2}}\right)}{a + x}$$