Mister Exam

Derivative of sqrt(tan5x)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  __________
\/ tan(5*x) 
$$\sqrt{\tan{\left(5 x \right)}}$$
d /  __________\
--\\/ tan(5*x) /
dx              
$$\frac{d}{d x} \sqrt{\tan{\left(5 x \right)}}$$
Detail solution
  1. Let .

  2. Apply the power rule: goes to

  3. Then, apply the chain rule. Multiply by :

    1. Rewrite the function to be differentiated:

    2. Apply the quotient rule, which is:

      and .

      To find :

      1. Let .

      2. The derivative of sine is cosine:

      3. Then, apply the chain rule. Multiply by :

        1. The derivative of a constant times a function is the constant times the derivative of the function.

          1. Apply the power rule: goes to

          So, the result is:

        The result of the chain rule is:

      To find :

      1. Let .

      2. The derivative of cosine is negative sine:

      3. Then, apply the chain rule. Multiply by :

        1. The derivative of a constant times a function is the constant times the derivative of the function.

          1. Apply the power rule: goes to

          So, the result is:

        The result of the chain rule is:

      Now plug in to the quotient rule:

    The result of the chain rule is:

  4. Now simplify:


The answer is:

The graph
The first derivative [src]
         2     
5   5*tan (5*x)
- + -----------
2        2     
---------------
    __________ 
  \/ tan(5*x)  
$$\frac{\frac{5 \tan^{2}{\left(5 x \right)}}{2} + \frac{5}{2}}{\sqrt{\tan{\left(5 x \right)}}}$$
The second derivative [src]
   /       2     \ /                        2     \
   |1   tan (5*x)| |    __________   1 + tan (5*x)|
25*|- + ---------|*|4*\/ tan(5*x)  - -------------|
   \4       4    / |                     3/2      |
                   \                  tan   (5*x) /
$$25 \left(- \frac{\tan^{2}{\left(5 x \right)} + 1}{\tan^{\frac{3}{2}}{\left(5 x \right)}} + 4 \sqrt{\tan{\left(5 x \right)}}\right) \left(\frac{\tan^{2}{\left(5 x \right)}}{4} + \frac{1}{4}\right)$$
The third derivative [src]
                    /                                                      2\
    /       2     \ |                   /       2     \     /       2     \ |
    |1   tan (5*x)| |      3/2        4*\1 + tan (5*x)/   3*\1 + tan (5*x)/ |
125*|- + ---------|*|16*tan   (5*x) - ----------------- + ------------------|
    \8       8    / |                      __________           5/2         |
                    \                    \/ tan(5*x)         tan   (5*x)    /
$$125 \left(\frac{\tan^{2}{\left(5 x \right)}}{8} + \frac{1}{8}\right) \left(\frac{3 \left(\tan^{2}{\left(5 x \right)} + 1\right)^{2}}{\tan^{\frac{5}{2}}{\left(5 x \right)}} - \frac{4 \left(\tan^{2}{\left(5 x \right)} + 1\right)}{\sqrt{\tan{\left(5 x \right)}}} + 16 \tan^{\frac{3}{2}}{\left(5 x \right)}\right)$$
The graph
Derivative of sqrt(tan5x)