Mister Exam

Other calculators


sqrt(1+y^2)

Derivative of sqrt(1+y^2)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
   ________
  /      2 
\/  1 + y  
$$\sqrt{y^{2} + 1}$$
sqrt(1 + y^2)
Detail solution
  1. Let .

  2. Apply the power rule: goes to

  3. Then, apply the chain rule. Multiply by :

    1. Differentiate term by term:

      1. The derivative of the constant is zero.

      2. Apply the power rule: goes to

      The result is:

    The result of the chain rule is:


The answer is:

The graph
The first derivative [src]
     y     
-----------
   ________
  /      2 
\/  1 + y  
$$\frac{y}{\sqrt{y^{2} + 1}}$$
The second derivative [src]
        2  
       y   
 1 - ------
          2
     1 + y 
-----------
   ________
  /      2 
\/  1 + y  
$$\frac{- \frac{y^{2}}{y^{2} + 1} + 1}{\sqrt{y^{2} + 1}}$$
The third derivative [src]
    /        2  \
    |       y   |
3*y*|-1 + ------|
    |          2|
    \     1 + y /
-----------------
           3/2   
   /     2\      
   \1 + y /      
$$\frac{3 y \left(\frac{y^{2}}{y^{2} + 1} - 1\right)}{\left(y^{2} + 1\right)^{\frac{3}{2}}}$$
The graph
Derivative of sqrt(1+y^2)