Mister Exam

Other calculators


sqrt(1-y^2)

Derivative of sqrt(1-y^2)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
   ________
  /      2 
\/  1 - y  
$$\sqrt{1 - y^{2}}$$
sqrt(1 - y^2)
Detail solution
  1. Let .

  2. Apply the power rule: goes to

  3. Then, apply the chain rule. Multiply by :

    1. Differentiate term by term:

      1. The derivative of the constant is zero.

      2. The derivative of a constant times a function is the constant times the derivative of the function.

        1. Apply the power rule: goes to

        So, the result is:

      The result is:

    The result of the chain rule is:


The answer is:

The graph
The first derivative [src]
    -y     
-----------
   ________
  /      2 
\/  1 - y  
$$- \frac{y}{\sqrt{1 - y^{2}}}$$
The second derivative [src]
 /       2  \ 
 |      y   | 
-|1 + ------| 
 |         2| 
 \    1 - y / 
--------------
    ________  
   /      2   
 \/  1 - y    
$$- \frac{\frac{y^{2}}{1 - y^{2}} + 1}{\sqrt{1 - y^{2}}}$$
The third derivative [src]
     /       2  \
     |      y   |
-3*y*|1 + ------|
     |         2|
     \    1 - y /
-----------------
           3/2   
   /     2\      
   \1 - y /      
$$- \frac{3 y \left(\frac{y^{2}}{1 - y^{2}} + 1\right)}{\left(1 - y^{2}\right)^{\frac{3}{2}}}$$
The graph
Derivative of sqrt(1-y^2)