Mister Exam

Other calculators


sqrt((1+sinx)/(1-sinx))

Derivative of sqrt((1+sinx)/(1-sinx))

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
    ____________
   / 1 + sin(x) 
  /  ---------- 
\/   1 - sin(x) 
$$\sqrt{\frac{\sin{\left(x \right)} + 1}{1 - \sin{\left(x \right)}}}$$
sqrt((1 + sin(x))/(1 - sin(x)))
Detail solution
  1. Let .

  2. Apply the power rule: goes to

  3. Then, apply the chain rule. Multiply by :

    1. Apply the quotient rule, which is:

      and .

      To find :

      1. Differentiate term by term:

        1. The derivative of the constant is zero.

        2. The derivative of sine is cosine:

        The result is:

      To find :

      1. Differentiate term by term:

        1. The derivative of the constant is zero.

        2. The derivative of a constant times a function is the constant times the derivative of the function.

          1. The derivative of sine is cosine:

          So, the result is:

        The result is:

      Now plug in to the quotient rule:

    The result of the chain rule is:

  4. Now simplify:


The answer is:

The graph
The first derivative [src]
    ____________                                                    
   / 1 + sin(x)               /    cos(x)       (1 + sin(x))*cos(x)\
  /  ---------- *(1 - sin(x))*|-------------- + -------------------|
\/   1 - sin(x)               |2*(1 - sin(x))                   2  |
                              \                   2*(1 - sin(x))   /
--------------------------------------------------------------------
                             1 + sin(x)                             
$$\frac{\sqrt{\frac{\sin{\left(x \right)} + 1}{1 - \sin{\left(x \right)}}} \left(1 - \sin{\left(x \right)}\right) \left(\frac{\cos{\left(x \right)}}{2 \left(1 - \sin{\left(x \right)}\right)} + \frac{\left(\sin{\left(x \right)} + 1\right) \cos{\left(x \right)}}{2 \left(1 - \sin{\left(x \right)}\right)^{2}}\right)}{\sin{\left(x \right)} + 1}$$
The second derivative [src]
                     /                                                                                                                                               2        \
                     |                                                   2    /     1 + sin(x)\                            2    /     1 + sin(x)\   /     1 + sin(x)\     2   |
    ________________ |                2           2                   cos (x)*|1 - -----------|                         cos (x)*|1 - -----------|   |1 - -----------| *cos (x)|
   / -(1 + sin(x))   |  sin(x)     cos (x)     cos (x)*(1 + sin(x))           \    -1 + sin(x)/   (1 + sin(x))*sin(x)           \    -1 + sin(x)/   \    -1 + sin(x)/         |
  /  -------------- *|- ------ - ----------- + -------------------- + ------------------------- + ------------------- - ------------------------- + --------------------------|
\/    -1 + sin(x)    |    2      -1 + sin(x)                   2           2*(-1 + sin(x))          2*(-1 + sin(x))           2*(1 + sin(x))              4*(1 + sin(x))      |
                     \                            (-1 + sin(x))                                                                                                               /
-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
                                                                                   1 + sin(x)                                                                                  
$$\frac{\sqrt{- \frac{\sin{\left(x \right)} + 1}{\sin{\left(x \right)} - 1}} \left(\frac{\left(1 - \frac{\sin{\left(x \right)} + 1}{\sin{\left(x \right)} - 1}\right)^{2} \cos^{2}{\left(x \right)}}{4 \left(\sin{\left(x \right)} + 1\right)} - \frac{\left(1 - \frac{\sin{\left(x \right)} + 1}{\sin{\left(x \right)} - 1}\right) \cos^{2}{\left(x \right)}}{2 \left(\sin{\left(x \right)} + 1\right)} + \frac{\left(1 - \frac{\sin{\left(x \right)} + 1}{\sin{\left(x \right)} - 1}\right) \cos^{2}{\left(x \right)}}{2 \left(\sin{\left(x \right)} - 1\right)} - \frac{\sin{\left(x \right)}}{2} + \frac{\left(\sin{\left(x \right)} + 1\right) \sin{\left(x \right)}}{2 \left(\sin{\left(x \right)} - 1\right)} - \frac{\cos^{2}{\left(x \right)}}{\sin{\left(x \right)} - 1} + \frac{\left(\sin{\left(x \right)} + 1\right) \cos^{2}{\left(x \right)}}{\left(\sin{\left(x \right)} - 1\right)^{2}}\right)}{\sin{\left(x \right)} + 1}$$
The third derivative [src]
                     /            2                                  2                                                    2                                  2                                                                                                                                                                                                                      /      2                                  2                         \                                                                                                                    \       
                     |       2*cos (x)    (1 + sin(x))*sin(x)   2*cos (x)*(1 + sin(x))                               2*cos (x)    (1 + sin(x))*sin(x)   2*cos (x)*(1 + sin(x))                                                                                                                                                                      2             /     1 + sin(x)\ | 2*cos (x)    (1 + sin(x))*sin(x)   2*cos (x)*(1 + sin(x))         |                                               3                                                           2        |       
                     |      ----------- - ------------------- - ---------------------- + sin(x)                     ----------- - ------------------- - ---------------------- + sin(x)                                     2    /     1 + sin(x)\   /     1 + sin(x)\                                                             /     1 + sin(x)\     2      3*|1 - -----------|*|----------- - ------------------- - ---------------------- + sin(x)|   /     1 + sin(x)\          /     1 + sin(x)\     2         2    /     1 + sin(x)\      /     1 + sin(x)\     2   |       
    ________________ |      -1 + sin(x)       -1 + sin(x)                        2                                  -1 + sin(x)       -1 + sin(x)                        2                                     2         cos (x)*|1 - -----------|   |1 - -----------|*sin(x)        2                                           3*|1 - -----------| *cos (x)     \    -1 + sin(x)/ |-1 + sin(x)       -1 + sin(x)                        2             |   |1 - -----------|*sin(x)   |1 - -----------| *cos (x)   cos (x)*|1 - -----------|    3*|1 - -----------| *cos (x)|       
   / -(1 + sin(x))   |  1                                           (-1 + sin(x))                    1 + sin(x)                                             (-1 + sin(x))                   3*sin(x)      3*cos (x)              \    -1 + sin(x)/   \    -1 + sin(x)/          3*cos (x)*(1 + sin(x))   3*(1 + sin(x))*sin(x)     \    -1 + sin(x)/                                \                                        (-1 + sin(x))              /   \    -1 + sin(x)/          \    -1 + sin(x)/                    \    -1 + sin(x)/      \    -1 + sin(x)/         |       
  /  -------------- *|- - + ------------------------------------------------------------------- + --------------- - ------------------------------------------------------------------- + ----------- + -------------- + ------------------------- + ------------------------ - ---------------------- - --------------------- - ---------------------------- - ----------------------------------------------------------------------------------------- - ------------------------ + -------------------------- - -------------------------- + ----------------------------|*cos(x)
\/    -1 + sin(x)    |  2                                1 + sin(x)                               2*(-1 + sin(x))                               -1 + sin(x)                               -1 + sin(x)                2                     2              2*(1 + sin(x))                         3                        2                          2                                                4*(1 + sin(x))                                            2*(-1 + sin(x))                           2         (1 + sin(x))*(-1 + sin(x))   4*(1 + sin(x))*(-1 + sin(x))|       
                     \                                                                                                                                                                                  (-1 + sin(x))          (1 + sin(x))                                         (-1 + sin(x))            (-1 + sin(x))             4*(1 + sin(x))                                                                                                                                       8*(1 + sin(x))                                                                   /       
-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
                                                                                                                                                                                                                                                                                      1 + sin(x)                                                                                                                                                                                                                                                                                     
$$\frac{\sqrt{- \frac{\sin{\left(x \right)} + 1}{\sin{\left(x \right)} - 1}} \left(\frac{\left(1 - \frac{\sin{\left(x \right)} + 1}{\sin{\left(x \right)} - 1}\right)^{3} \cos^{2}{\left(x \right)}}{8 \left(\sin{\left(x \right)} + 1\right)^{2}} - \frac{3 \left(1 - \frac{\sin{\left(x \right)} + 1}{\sin{\left(x \right)} - 1}\right)^{2} \cos^{2}{\left(x \right)}}{4 \left(\sin{\left(x \right)} + 1\right)^{2}} + \frac{3 \left(1 - \frac{\sin{\left(x \right)} + 1}{\sin{\left(x \right)} - 1}\right)^{2} \cos^{2}{\left(x \right)}}{4 \left(\sin{\left(x \right)} - 1\right) \left(\sin{\left(x \right)} + 1\right)} - \frac{3 \left(1 - \frac{\sin{\left(x \right)} + 1}{\sin{\left(x \right)} - 1}\right) \left(\sin{\left(x \right)} - \frac{\left(\sin{\left(x \right)} + 1\right) \sin{\left(x \right)}}{\sin{\left(x \right)} - 1} + \frac{2 \cos^{2}{\left(x \right)}}{\sin{\left(x \right)} - 1} - \frac{2 \left(\sin{\left(x \right)} + 1\right) \cos^{2}{\left(x \right)}}{\left(\sin{\left(x \right)} - 1\right)^{2}}\right)}{4 \left(\sin{\left(x \right)} + 1\right)} + \frac{\left(1 - \frac{\sin{\left(x \right)} + 1}{\sin{\left(x \right)} - 1}\right) \sin{\left(x \right)}}{2 \left(\sin{\left(x \right)} + 1\right)} + \frac{\left(1 - \frac{\sin{\left(x \right)} + 1}{\sin{\left(x \right)} - 1}\right) \cos^{2}{\left(x \right)}}{\left(\sin{\left(x \right)} + 1\right)^{2}} - \frac{\left(1 - \frac{\sin{\left(x \right)} + 1}{\sin{\left(x \right)} - 1}\right) \sin{\left(x \right)}}{2 \left(\sin{\left(x \right)} - 1\right)} - \frac{\left(1 - \frac{\sin{\left(x \right)} + 1}{\sin{\left(x \right)} - 1}\right) \cos^{2}{\left(x \right)}}{\left(\sin{\left(x \right)} - 1\right) \left(\sin{\left(x \right)} + 1\right)} - \frac{1}{2} + \frac{\sin{\left(x \right)} - \frac{\left(\sin{\left(x \right)} + 1\right) \sin{\left(x \right)}}{\sin{\left(x \right)} - 1} + \frac{2 \cos^{2}{\left(x \right)}}{\sin{\left(x \right)} - 1} - \frac{2 \left(\sin{\left(x \right)} + 1\right) \cos^{2}{\left(x \right)}}{\left(\sin{\left(x \right)} - 1\right)^{2}}}{\sin{\left(x \right)} + 1} + \frac{\sin{\left(x \right)} + 1}{2 \left(\sin{\left(x \right)} - 1\right)} - \frac{\sin{\left(x \right)} - \frac{\left(\sin{\left(x \right)} + 1\right) \sin{\left(x \right)}}{\sin{\left(x \right)} - 1} + \frac{2 \cos^{2}{\left(x \right)}}{\sin{\left(x \right)} - 1} - \frac{2 \left(\sin{\left(x \right)} + 1\right) \cos^{2}{\left(x \right)}}{\left(\sin{\left(x \right)} - 1\right)^{2}}}{\sin{\left(x \right)} - 1} + \frac{3 \sin{\left(x \right)}}{\sin{\left(x \right)} - 1} - \frac{3 \left(\sin{\left(x \right)} + 1\right) \sin{\left(x \right)}}{\left(\sin{\left(x \right)} - 1\right)^{2}} + \frac{3 \cos^{2}{\left(x \right)}}{\left(\sin{\left(x \right)} - 1\right)^{2}} - \frac{3 \left(\sin{\left(x \right)} + 1\right) \cos^{2}{\left(x \right)}}{\left(\sin{\left(x \right)} - 1\right)^{3}}\right) \cos{\left(x \right)}}{\sin{\left(x \right)} + 1}$$
The graph
Derivative of sqrt((1+sinx)/(1-sinx))