/ ____________\ | / 1 + sin(x) | log| / ---------- | \\/ 1 - sin(x) /
log(sqrt((1 + sin(x))/(1 - sin(x))))
Let .
The derivative of is .
Then, apply the chain rule. Multiply by :
Let .
Apply the power rule: goes to
Then, apply the chain rule. Multiply by :
Apply the quotient rule, which is:
and .
To find :
Differentiate term by term:
The derivative of the constant is zero.
The derivative of sine is cosine:
The result is:
To find :
Differentiate term by term:
The derivative of the constant is zero.
The derivative of a constant times a function is the constant times the derivative of the function.
The derivative of sine is cosine:
So, the result is:
The result is:
Now plug in to the quotient rule:
The result of the chain rule is:
The result of the chain rule is:
Now simplify:
The answer is:
/ cos(x) (1 + sin(x))*cos(x)\ (1 - sin(x))*|-------------- + -------------------| |2*(1 - sin(x)) 2 | \ 2*(1 - sin(x)) / --------------------------------------------------- 1 + sin(x)
2 / 1 + sin(x)\ 2 / 1 + sin(x)\ 2 2 cos (x)*|1 - -----------| cos (x)*|1 - -----------| sin(x) cos (x) cos (x)*(1 + sin(x)) \ -1 + sin(x)/ (1 + sin(x))*sin(x) \ -1 + sin(x)/ - ------ - ----------- + -------------------- + ------------------------- + ------------------- - ------------------------- 2 -1 + sin(x) 2 2*(-1 + sin(x)) 2*(-1 + sin(x)) 2*(1 + sin(x)) (-1 + sin(x)) --------------------------------------------------------------------------------------------------------------------------- 1 + sin(x)
/ 2 2 2 2 \ | 2*cos (x) (1 + sin(x))*sin(x) 2*cos (x)*(1 + sin(x)) 2*cos (x) (1 + sin(x))*sin(x) 2*cos (x)*(1 + sin(x)) | | ----------- - ------------------- - ---------------------- + sin(x) ----------- - ------------------- - ---------------------- + sin(x) 2 / 1 + sin(x)\ / 1 + sin(x)\ / 1 + sin(x)\ 2 / 1 + sin(x)\ | | -1 + sin(x) -1 + sin(x) 2 -1 + sin(x) -1 + sin(x) 2 2 cos (x)*|1 - -----------| |1 - -----------|*sin(x) 2 |1 - -----------|*sin(x) cos (x)*|1 - -----------| | | 1 (-1 + sin(x)) 1 + sin(x) (-1 + sin(x)) 3*sin(x) 3*cos (x) \ -1 + sin(x)/ \ -1 + sin(x)/ 3*cos (x)*(1 + sin(x)) 3*(1 + sin(x))*sin(x) \ -1 + sin(x)/ \ -1 + sin(x)/ | |- - + ------------------------------------------------------------------- + --------------- - ------------------------------------------------------------------- + ----------- + -------------- + ------------------------- + ------------------------ - ---------------------- - --------------------- - ------------------------ - --------------------------|*cos(x) | 2 1 + sin(x) 2*(-1 + sin(x)) -1 + sin(x) -1 + sin(x) 2 2 2*(1 + sin(x)) 3 2 2*(-1 + sin(x)) (1 + sin(x))*(-1 + sin(x))| \ (-1 + sin(x)) (1 + sin(x)) (-1 + sin(x)) (-1 + sin(x)) / ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- 1 + sin(x)