Mister Exam

Other calculators

Derivative of sqrt(4r^2-x^2)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
   ___________
  /    2    2 
\/  4*r  - x  
$$\sqrt{4 r^{2} - x^{2}}$$
  /   ___________\
d |  /    2    2 |
--\\/  4*r  - x  /
dx                
$$\frac{\partial}{\partial x} \sqrt{4 r^{2} - x^{2}}$$
Detail solution
  1. Let .

  2. Apply the power rule: goes to

  3. Then, apply the chain rule. Multiply by :

    1. Differentiate term by term:

      1. The derivative of the constant is zero.

      2. The derivative of a constant times a function is the constant times the derivative of the function.

        1. Apply the power rule: goes to

        So, the result is:

      The result is:

    The result of the chain rule is:

  4. Now simplify:


The answer is:

The first derivative [src]
     -x       
--------------
   ___________
  /    2    2 
\/  4*r  - x  
$$- \frac{x}{\sqrt{4 r^{2} - x^{2}}}$$
The second derivative [src]
 /          2    \ 
 |         x     | 
-|1 + -----------| 
 |       2      2| 
 \    - x  + 4*r / 
-------------------
     _____________ 
    /    2      2  
  \/  - x  + 4*r   
$$- \frac{\frac{x^{2}}{4 r^{2} - x^{2}} + 1}{\sqrt{4 r^{2} - x^{2}}}$$
The third derivative [src]
     /          2    \
     |         x     |
-3*x*|1 + -----------|
     |       2      2|
     \    - x  + 4*r /
----------------------
                3/2   
   /   2      2\      
   \- x  + 4*r /      
$$- \frac{3 x \left(\frac{x^{2}}{4 r^{2} - x^{2}} + 1\right)}{\left(4 r^{2} - x^{2}\right)^{\frac{3}{2}}}$$