/ ________\ |1 / 1 | log|- + / -- + 1 | |x / 2 | \ \/ x /
log(1/x + sqrt(1/(x^2) + 1))
Let .
The derivative of is .
Then, apply the chain rule. Multiply by :
Differentiate term by term:
Apply the power rule: goes to
Let .
Apply the power rule: goes to
Then, apply the chain rule. Multiply by :
Differentiate term by term:
Let .
Apply the power rule: goes to
Then, apply the chain rule. Multiply by :
Apply the power rule: goes to
The result of the chain rule is:
The derivative of the constant is zero.
The result is:
The result of the chain rule is:
The result is:
The result of the chain rule is:
Now simplify:
The answer is:
1 1
- -- - ----------------
2 ________
x 3 / 1
x * / -- + 1
/ 2
\/ x
-----------------------
________
1 / 1
- + / -- + 1
x / 2
\/ x
2
/ 1 \
|1 + ---------------|
| ________|
| / 1 |
| x* / 1 + -- |
| / 2 |
1 3 \ \/ x /
2 - -------------- + --------------- - ----------------------
3/2 ________ / ________\
3 / 1 \ / 1 |1 / 1 |
x *|1 + --| x* / 1 + -- x*|- + / 1 + -- |
| 2| / 2 |x / 2 |
\ x / \/ x \ \/ x /
-------------------------------------------------------------
/ ________\
3 |1 / 1 |
x *|- + / 1 + -- |
|x / 2 |
\ \/ x /
3
/ 1 \ / 1 \ / 1 3 \
2*|1 + ---------------| 3*|1 + ---------------|*|2 - -------------- + ---------------|
| ________| | ________| | 3/2 ________|
| / 1 | | / 1 | | 3 / 1 \ / 1 |
| x* / 1 + -- | | x* / 1 + -- | | x *|1 + --| x* / 1 + -- |
| / 2 | | / 2 | | | 2| / 2 |
12 3 9 \ \/ x / \ \/ x / \ \ x / \/ x /
-6 - --------------- - -------------- + -------------- - ------------------------ + --------------------------------------------------------------
________ 5/2 3/2 2 / ________\
/ 1 5 / 1 \ 3 / 1 \ / ________\ |1 / 1 |
x* / 1 + -- x *|1 + --| x *|1 + --| 2 |1 / 1 | x*|- + / 1 + -- |
/ 2 | 2| | 2| x *|- + / 1 + -- | |x / 2 |
\/ x \ x / \ x / |x / 2 | \ \/ x /
\ \/ x /
--------------------------------------------------------------------------------------------------------------------------------------------------
/ ________\
4 |1 / 1 |
x *|- + / 1 + -- |
|x / 2 |
\ \/ x /