Mister Exam

Other calculators

Derivative of ln(1/x+sqrt(1/x^2+1))

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
   /         ________\
   |1       / 1      |
log|- +    /  -- + 1 |
   |x     /    2     |
   \    \/    x      /
$$\log{\left(\sqrt{1 + \frac{1}{x^{2}}} + \frac{1}{x} \right)}$$
log(1/x + sqrt(1/(x^2) + 1))
Detail solution
  1. Let .

  2. The derivative of is .

  3. Then, apply the chain rule. Multiply by :

    1. Differentiate term by term:

      1. Apply the power rule: goes to

      2. Let .

      3. Apply the power rule: goes to

      4. Then, apply the chain rule. Multiply by :

        1. Differentiate term by term:

          1. Let .

          2. Apply the power rule: goes to

          3. Then, apply the chain rule. Multiply by :

            1. Apply the power rule: goes to

            The result of the chain rule is:

          4. The derivative of the constant is zero.

          The result is:

        The result of the chain rule is:

      The result is:

    The result of the chain rule is:

  4. Now simplify:


The answer is:

The graph
The first derivative [src]
  1           1        
- -- - ----------------
   2           ________
  x     3     / 1      
       x *   /  -- + 1 
            /    2     
          \/    x      
-----------------------
            ________   
   1       / 1         
   - +    /  -- + 1    
   x     /    2        
       \/    x         
$$\frac{- \frac{1}{x^{2}} - \frac{1}{x^{3} \sqrt{1 + \frac{1}{x^{2}}}}}{\sqrt{1 + \frac{1}{x^{2}}} + \frac{1}{x}}$$
The second derivative [src]
                                                            2
                                       /           1       \ 
                                       |1 + ---------------| 
                                       |           ________| 
                                       |          /     1  | 
                                       |    x*   /  1 + -- | 
                                       |        /        2 | 
          1                 3          \      \/        x  / 
2 - -------------- + --------------- - ----------------------
               3/2          ________     /         ________\ 
     3 /    1 \            /     1       |1       /     1  | 
    x *|1 + --|      x*   /  1 + --    x*|- +    /  1 + -- | 
       |     2|          /        2      |x     /        2 | 
       \    x /        \/        x       \    \/        x  / 
-------------------------------------------------------------
                       /         ________\                   
                     3 |1       /     1  |                   
                    x *|- +    /  1 + -- |                   
                       |x     /        2 |                   
                       \    \/        x  /                   
$$\frac{2 - \frac{\left(1 + \frac{1}{x \sqrt{1 + \frac{1}{x^{2}}}}\right)^{2}}{x \left(\sqrt{1 + \frac{1}{x^{2}}} + \frac{1}{x}\right)} + \frac{3}{x \sqrt{1 + \frac{1}{x^{2}}}} - \frac{1}{x^{3} \left(1 + \frac{1}{x^{2}}\right)^{\frac{3}{2}}}}{x^{3} \left(\sqrt{1 + \frac{1}{x^{2}}} + \frac{1}{x}\right)}$$
The third derivative [src]
                                                                                3                                                                 
                                                           /           1       \      /           1       \ /          1                 3       \
                                                         2*|1 + ---------------|    3*|1 + ---------------|*|2 - -------------- + ---------------|
                                                           |           ________|      |           ________| |               3/2          ________|
                                                           |          /     1  |      |          /     1  | |     3 /    1 \            /     1  |
                                                           |    x*   /  1 + -- |      |    x*   /  1 + -- | |    x *|1 + --|      x*   /  1 + -- |
                                                           |        /        2 |      |        /        2 | |       |     2|          /        2 |
            12               3                9            \      \/        x  /      \      \/        x  / \       \    x /        \/        x  /
-6 - --------------- - -------------- + -------------- - ------------------------ + --------------------------------------------------------------
            ________              5/2              3/2                         2                          /         ________\                     
           /     1      5 /    1 \       3 /    1 \         /         ________\                           |1       /     1  |                     
     x*   /  1 + --    x *|1 + --|      x *|1 + --|       2 |1       /     1  |                         x*|- +    /  1 + -- |                     
         /        2       |     2|         |     2|      x *|- +    /  1 + -- |                           |x     /        2 |                     
       \/        x        \    x /         \    x /         |x     /        2 |                           \    \/        x  /                     
                                                            \    \/        x  /                                                                   
--------------------------------------------------------------------------------------------------------------------------------------------------
                                                                 /         ________\                                                              
                                                               4 |1       /     1  |                                                              
                                                              x *|- +    /  1 + -- |                                                              
                                                                 |x     /        2 |                                                              
                                                                 \    \/        x  /                                                              
$$\frac{-6 + \frac{3 \left(1 + \frac{1}{x \sqrt{1 + \frac{1}{x^{2}}}}\right) \left(2 + \frac{3}{x \sqrt{1 + \frac{1}{x^{2}}}} - \frac{1}{x^{3} \left(1 + \frac{1}{x^{2}}\right)^{\frac{3}{2}}}\right)}{x \left(\sqrt{1 + \frac{1}{x^{2}}} + \frac{1}{x}\right)} - \frac{12}{x \sqrt{1 + \frac{1}{x^{2}}}} - \frac{2 \left(1 + \frac{1}{x \sqrt{1 + \frac{1}{x^{2}}}}\right)^{3}}{x^{2} \left(\sqrt{1 + \frac{1}{x^{2}}} + \frac{1}{x}\right)^{2}} + \frac{9}{x^{3} \left(1 + \frac{1}{x^{2}}\right)^{\frac{3}{2}}} - \frac{3}{x^{5} \left(1 + \frac{1}{x^{2}}\right)^{\frac{5}{2}}}}{x^{4} \left(\sqrt{1 + \frac{1}{x^{2}}} + \frac{1}{x}\right)}$$