Mister Exam

Other calculators

Derivative of sqrt(log(5x+1,2))

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  ________________
\/ log(5*x + 6/5) 
$$\sqrt{\log{\left(5 x + \frac{6}{5} \right)}}$$
sqrt(log(5*x + 6/5))
Detail solution
  1. Let .

  2. Apply the power rule: goes to

  3. Then, apply the chain rule. Multiply by :

    1. Let .

    2. The derivative of is .

    3. Then, apply the chain rule. Multiply by :

      1. Differentiate term by term:

        1. The derivative of a constant times a function is the constant times the derivative of the function.

          1. Apply the power rule: goes to

          So, the result is:

        2. The derivative of the constant is zero.

        The result is:

      The result of the chain rule is:

    The result of the chain rule is:

  4. Now simplify:


The answer is:

The graph
The first derivative [src]
               5                
--------------------------------
                ________________
2*(5*x + 6/5)*\/ log(5*x + 6/5) 
$$\frac{5}{2 \left(5 x + \frac{6}{5}\right) \sqrt{\log{\left(5 x + \frac{6}{5} \right)}}}$$
The second derivative [src]
        /          1       \    
   -625*|2 + --------------|    
        \    log(6/5 + 5*x)/    
--------------------------------
            2   ________________
4*(6 + 25*x) *\/ log(6/5 + 5*x) 
$$- \frac{625 \left(2 + \frac{1}{\log{\left(5 x + \frac{6}{5} \right)}}\right)}{4 \left(25 x + 6\right)^{2} \sqrt{\log{\left(5 x + \frac{6}{5} \right)}}}$$
The third derivative [src]
      /           3                   3        \
15625*|1 + ---------------- + -----------------|
      |    4*log(6/5 + 5*x)        2           |
      \                       8*log (6/5 + 5*x)/
------------------------------------------------
                   3   ________________         
         (6 + 25*x) *\/ log(6/5 + 5*x)          
$$\frac{15625 \left(1 + \frac{3}{4 \log{\left(5 x + \frac{6}{5} \right)}} + \frac{3}{8 \log{\left(5 x + \frac{6}{5} \right)}^{2}}\right)}{\left(25 x + 6\right)^{3} \sqrt{\log{\left(5 x + \frac{6}{5} \right)}}}$$