Mister Exam

Derivative of sqrt(cos(2x))

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  __________
\/ cos(2*x) 
$$\sqrt{\cos{\left(2 x \right)}}$$
sqrt(cos(2*x))
Detail solution
  1. Let .

  2. Apply the power rule: goes to

  3. Then, apply the chain rule. Multiply by :

    1. Let .

    2. The derivative of cosine is negative sine:

    3. Then, apply the chain rule. Multiply by :

      1. The derivative of a constant times a function is the constant times the derivative of the function.

        1. Apply the power rule: goes to

        So, the result is:

      The result of the chain rule is:

    The result of the chain rule is:


The answer is:

The graph
The first derivative [src]
 -sin(2*x)  
------------
  __________
\/ cos(2*x) 
$$- \frac{\sin{\left(2 x \right)}}{\sqrt{\cos{\left(2 x \right)}}}$$
The second derivative [src]
 /                     2      \
 |    __________    sin (2*x) |
-|2*\/ cos(2*x)  + -----------|
 |                    3/2     |
 \                 cos   (2*x)/
$$- (\frac{\sin^{2}{\left(2 x \right)}}{\cos^{\frac{3}{2}}{\left(2 x \right)}} + 2 \sqrt{\cos{\left(2 x \right)}})$$
The third derivative [src]
 /         2     \          
 |    3*sin (2*x)|          
-|2 + -----------|*sin(2*x) 
 |        2      |          
 \     cos (2*x) /          
----------------------------
          __________        
        \/ cos(2*x)         
$$- \frac{\left(\frac{3 \sin^{2}{\left(2 x \right)}}{\cos^{2}{\left(2 x \right)}} + 2\right) \sin{\left(2 x \right)}}{\sqrt{\cos{\left(2 x \right)}}}$$