Mister Exam

Derivative of ln*sqrt(cos2x)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
         __________
log(x)*\/ cos(2*x) 
$$\log{\left(x \right)} \sqrt{\cos{\left(2 x \right)}}$$
Detail solution
  1. Apply the product rule:

    ; to find :

    1. The derivative of is .

    ; to find :

    1. Let .

    2. Apply the power rule: goes to

    3. Then, apply the chain rule. Multiply by :

      1. Let .

      2. The derivative of cosine is negative sine:

      3. Then, apply the chain rule. Multiply by :

        1. The derivative of a constant times a function is the constant times the derivative of the function.

          1. Apply the power rule: goes to

          So, the result is:

        The result of the chain rule is:

      The result of the chain rule is:

    The result is:

  2. Now simplify:


The answer is:

The graph
The first derivative [src]
  __________                  
\/ cos(2*x)    log(x)*sin(2*x)
------------ - ---------------
     x             __________ 
                 \/ cos(2*x)  
$$- \frac{\log{\left(x \right)} \sin{\left(2 x \right)}}{\sqrt{\cos{\left(2 x \right)}}} + \frac{\sqrt{\cos{\left(2 x \right)}}}{x}$$
The second derivative [src]
 /  __________   /                     2      \                        \
 |\/ cos(2*x)    |    __________    sin (2*x) |            2*sin(2*x)  |
-|------------ + |2*\/ cos(2*x)  + -----------|*log(x) + --------------|
 |      2        |                    3/2     |              __________|
 \     x         \                 cos   (2*x)/          x*\/ cos(2*x) /
$$- (\left(\frac{\sin^{2}{\left(2 x \right)}}{\cos^{\frac{3}{2}}{\left(2 x \right)}} + 2 \sqrt{\cos{\left(2 x \right)}}\right) \log{\left(x \right)} + \frac{2 \sin{\left(2 x \right)}}{x \sqrt{\cos{\left(2 x \right)}}} + \frac{\sqrt{\cos{\left(2 x \right)}}}{x^{2}})$$
The third derivative [src]
    /                     2      \                                      /         2     \                
    |    __________    sin (2*x) |                                      |    3*sin (2*x)|                
  3*|2*\/ cos(2*x)  + -----------|                                      |2 + -----------|*log(x)*sin(2*x)
    |                    3/2     |       __________                     |        2      |                
    \                 cos   (2*x)/   2*\/ cos(2*x)       3*sin(2*x)     \     cos (2*x) /                
- -------------------------------- + -------------- + --------------- - ---------------------------------
                 x                          3          2   __________                __________          
                                           x          x *\/ cos(2*x)               \/ cos(2*x)           
$$- \frac{\left(\frac{3 \sin^{2}{\left(2 x \right)}}{\cos^{2}{\left(2 x \right)}} + 2\right) \log{\left(x \right)} \sin{\left(2 x \right)}}{\sqrt{\cos{\left(2 x \right)}}} - \frac{3 \left(\frac{\sin^{2}{\left(2 x \right)}}{\cos^{\frac{3}{2}}{\left(2 x \right)}} + 2 \sqrt{\cos{\left(2 x \right)}}\right)}{x} + \frac{3 \sin{\left(2 x \right)}}{x^{2} \sqrt{\cos{\left(2 x \right)}}} + \frac{2 \sqrt{\cos{\left(2 x \right)}}}{x^{3}}$$
The graph
Derivative of ln*sqrt(cos2x)