__________ log(x)*\/ cos(2*x)
Apply the product rule:
; to find :
The derivative of is .
; to find :
Let .
Apply the power rule: goes to
Then, apply the chain rule. Multiply by :
Let .
The derivative of cosine is negative sine:
Then, apply the chain rule. Multiply by :
The derivative of a constant times a function is the constant times the derivative of the function.
Apply the power rule: goes to
So, the result is:
The result of the chain rule is:
The result of the chain rule is:
The result is:
Now simplify:
The answer is:
__________
\/ cos(2*x) log(x)*sin(2*x)
------------ - ---------------
x __________
\/ cos(2*x)
/ __________ / 2 \ \ |\/ cos(2*x) | __________ sin (2*x) | 2*sin(2*x) | -|------------ + |2*\/ cos(2*x) + -----------|*log(x) + --------------| | 2 | 3/2 | __________| \ x \ cos (2*x)/ x*\/ cos(2*x) /
/ 2 \ / 2 \
| __________ sin (2*x) | | 3*sin (2*x)|
3*|2*\/ cos(2*x) + -----------| |2 + -----------|*log(x)*sin(2*x)
| 3/2 | __________ | 2 |
\ cos (2*x)/ 2*\/ cos(2*x) 3*sin(2*x) \ cos (2*x) /
- -------------------------------- + -------------- + --------------- - ---------------------------------
x 3 2 __________ __________
x x *\/ cos(2*x) \/ cos(2*x)