Mister Exam

Derivative of sqrt(5x-14)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  __________
\/ 5*x - 14 
5x14\sqrt{5 x - 14}
d /  __________\
--\\/ 5*x - 14 /
dx              
ddx5x14\frac{d}{d x} \sqrt{5 x - 14}
Detail solution
  1. Let u=5x14u = 5 x - 14.

  2. Apply the power rule: u\sqrt{u} goes to 12u\frac{1}{2 \sqrt{u}}

  3. Then, apply the chain rule. Multiply by ddx(5x14)\frac{d}{d x} \left(5 x - 14\right):

    1. Differentiate 5x145 x - 14 term by term:

      1. The derivative of a constant times a function is the constant times the derivative of the function.

        1. Apply the power rule: xx goes to 11

        So, the result is: 55

      2. The derivative of the constant (1)14\left(-1\right) 14 is zero.

      The result is: 55

    The result of the chain rule is:

    525x14\frac{5}{2 \sqrt{5 x - 14}}

  4. Now simplify:

    525x14\frac{5}{2 \sqrt{5 x - 14}}


The answer is:

525x14\frac{5}{2 \sqrt{5 x - 14}}

The graph
02468-8-6-4-2-1010010
The first derivative [src]
      5       
--------------
    __________
2*\/ 5*x - 14 
525x14\frac{5}{2 \sqrt{5 x - 14}}
The second derivative [src]
      -25       
----------------
             3/2
4*(-14 + 5*x)   
254(5x14)32- \frac{25}{4 \left(5 x - 14\right)^{\frac{3}{2}}}
The third derivative [src]
      375       
----------------
             5/2
8*(-14 + 5*x)   
3758(5x14)52\frac{375}{8 \left(5 x - 14\right)^{\frac{5}{2}}}
The graph
Derivative of sqrt(5x-14)