Mister Exam

Other calculators

Derivative of ((sqrt2x-4)-x)^4

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
                 4
/  _____        \ 
\\/ 2*x  - 4 - x/ 
$$\left(- x + \left(\sqrt{2 x} - 4\right)\right)^{4}$$
(sqrt(2*x) - 4 - x)^4
Detail solution
  1. Let .

  2. Apply the power rule: goes to

  3. Then, apply the chain rule. Multiply by :

    1. Differentiate term by term:

      1. Differentiate term by term:

        1. Let .

        2. Apply the power rule: goes to

        3. Then, apply the chain rule. Multiply by :

          1. The derivative of a constant times a function is the constant times the derivative of the function.

            1. Apply the power rule: goes to

            So, the result is:

          The result of the chain rule is:

        4. The derivative of the constant is zero.

        The result is:

      2. The derivative of a constant times a function is the constant times the derivative of the function.

        1. Apply the power rule: goes to

        So, the result is:

      The result is:

    The result of the chain rule is:

  4. Now simplify:


The answer is:

The graph
The first derivative [src]
                 3 /         ___   ___\
/  _____        \  |     2*\/ 2 *\/ x |
\\/ 2*x  - 4 - x/ *|-4 + -------------|
                   \           x      /
$$\left(-4 + \frac{2 \sqrt{2} \sqrt{x}}{x}\right) \left(- x + \left(\sqrt{2 x} - 4\right)\right)^{3}$$
The second derivative [src]
                       /             2                              \
                     2 |  /      ___\      ___ /          ___   ___\|
/          ___   ___\  |  |    \/ 2 |    \/ 2 *\4 + x - \/ 2 *\/ x /|
\4 + x - \/ 2 *\/ x / *|3*|2 - -----|  + ---------------------------|
                       |  |      ___|                 3/2           |
                       \  \    \/ x /                x              /
$$\left(3 \left(2 - \frac{\sqrt{2}}{\sqrt{x}}\right)^{2} + \frac{\sqrt{2} \left(- \sqrt{2} \sqrt{x} + x + 4\right)}{x^{\frac{3}{2}}}\right) \left(- \sqrt{2} \sqrt{x} + x + 4\right)^{2}$$
The third derivative [src]
                        /                                                        /      ___\                      \
                        |                                                    ___ |    \/ 2 | /          ___   ___\|
                        |             3                              2   3*\/ 2 *|2 - -----|*\4 + x - \/ 2 *\/ x /|
  /          ___   ___\ |  /      ___\      ___ /          ___   ___\            |      ___|                      |
  |    x   \/ 2 *\/ x | |  |    \/ 2 |    \/ 2 *\4 + x - \/ 2 *\/ x /            \    \/ x /                      |
3*|2 + - - -----------|*|2*|2 - -----|  - ---------------------------- + -----------------------------------------|
  \    2        2     / |  |      ___|                 5/2                                   3/2                  |
                        \  \    \/ x /                x                                     x                     /
$$3 \left(- \frac{\sqrt{2} \sqrt{x}}{2} + \frac{x}{2} + 2\right) \left(2 \left(2 - \frac{\sqrt{2}}{\sqrt{x}}\right)^{3} + \frac{3 \sqrt{2} \left(2 - \frac{\sqrt{2}}{\sqrt{x}}\right) \left(- \sqrt{2} \sqrt{x} + x + 4\right)}{x^{\frac{3}{2}}} - \frac{\sqrt{2} \left(- \sqrt{2} \sqrt{x} + x + 4\right)^{2}}{x^{\frac{5}{2}}}\right)$$