4 / _____ \ \\/ 2*x - 4 - x/
(sqrt(2*x) - 4 - x)^4
Let .
Apply the power rule: goes to
Then, apply the chain rule. Multiply by :
Differentiate term by term:
Differentiate term by term:
Let .
Apply the power rule: goes to
Then, apply the chain rule. Multiply by :
The derivative of a constant times a function is the constant times the derivative of the function.
Apply the power rule: goes to
So, the result is:
The result of the chain rule is:
The derivative of the constant is zero.
The result is:
The derivative of a constant times a function is the constant times the derivative of the function.
Apply the power rule: goes to
So, the result is:
The result is:
The result of the chain rule is:
Now simplify:
The answer is:
3 / ___ ___\
/ _____ \ | 2*\/ 2 *\/ x |
\\/ 2*x - 4 - x/ *|-4 + -------------|
\ x /
/ 2 \
2 | / ___\ ___ / ___ ___\|
/ ___ ___\ | | \/ 2 | \/ 2 *\4 + x - \/ 2 *\/ x /|
\4 + x - \/ 2 *\/ x / *|3*|2 - -----| + ---------------------------|
| | ___| 3/2 |
\ \ \/ x / x /
/ / ___\ \
| ___ | \/ 2 | / ___ ___\|
| 3 2 3*\/ 2 *|2 - -----|*\4 + x - \/ 2 *\/ x /|
/ ___ ___\ | / ___\ ___ / ___ ___\ | ___| |
| x \/ 2 *\/ x | | | \/ 2 | \/ 2 *\4 + x - \/ 2 *\/ x / \ \/ x / |
3*|2 + - - -----------|*|2*|2 - -----| - ---------------------------- + -----------------------------------------|
\ 2 2 / | | ___| 5/2 3/2 |
\ \ \/ x / x x /