Mister Exam

Other calculators


сos(x)^2+log(tan(x/2))

Derivative of сos(x)^2+log(tan(x/2))

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
   2         /   /x\\
cos (x) + log|tan|-||
             \   \2//
$$\log{\left(\tan{\left(\frac{x}{2} \right)} \right)} + \cos^{2}{\left(x \right)}$$
cos(x)^2 + log(tan(x/2))
Detail solution
  1. Differentiate term by term:

    1. Let .

    2. Apply the power rule: goes to

    3. Then, apply the chain rule. Multiply by :

      1. The derivative of cosine is negative sine:

      The result of the chain rule is:

    4. Let .

    5. The derivative of is .

    6. Then, apply the chain rule. Multiply by :

      1. Rewrite the function to be differentiated:

      2. Apply the quotient rule, which is:

        and .

        To find :

        1. Let .

        2. The derivative of sine is cosine:

        3. Then, apply the chain rule. Multiply by :

          1. The derivative of a constant times a function is the constant times the derivative of the function.

            1. Apply the power rule: goes to

            So, the result is:

          The result of the chain rule is:

        To find :

        1. Let .

        2. The derivative of cosine is negative sine:

        3. Then, apply the chain rule. Multiply by :

          1. The derivative of a constant times a function is the constant times the derivative of the function.

            1. Apply the power rule: goes to

            So, the result is:

          The result of the chain rule is:

        Now plug in to the quotient rule:

      The result of the chain rule is:

    The result is:

  2. Now simplify:


The answer is:

The graph
The first derivative [src]
       2/x\                  
    tan |-|                  
1       \2/                  
- + -------                  
2      2                     
----------- - 2*cos(x)*sin(x)
      /x\                    
   tan|-|                    
      \2/                    
$$\frac{\frac{\tan^{2}{\left(\frac{x}{2} \right)}}{2} + \frac{1}{2}}{\tan{\left(\frac{x}{2} \right)}} - 2 \sin{\left(x \right)} \cos{\left(x \right)}$$
The second derivative [src]
                                                   2
       2/x\                           /       2/x\\ 
    tan |-|                           |1 + tan |-|| 
1       \2/        2           2      \        \2// 
- + ------- - 2*cos (x) + 2*sin (x) - --------------
2      2                                     2/x\   
                                        4*tan |-|   
                                              \2/   
$$- \frac{\left(\tan^{2}{\left(\frac{x}{2} \right)} + 1\right)^{2}}{4 \tan^{2}{\left(\frac{x}{2} \right)}} + 2 \sin^{2}{\left(x \right)} - 2 \cos^{2}{\left(x \right)} + \frac{\tan^{2}{\left(\frac{x}{2} \right)}}{2} + \frac{1}{2}$$
The third derivative [src]
                                                      2                3
/       2/x\\    /x\                     /       2/x\\    /       2/x\\ 
|1 + tan |-||*tan|-|                     |1 + tan |-||    |1 + tan |-|| 
\        \2//    \2/                     \        \2//    \        \2// 
-------------------- + 8*cos(x)*sin(x) - -------------- + --------------
         2                                       /x\             3/x\   
                                            2*tan|-|        4*tan |-|   
                                                 \2/              \2/   
$$\frac{\left(\tan^{2}{\left(\frac{x}{2} \right)} + 1\right)^{3}}{4 \tan^{3}{\left(\frac{x}{2} \right)}} - \frac{\left(\tan^{2}{\left(\frac{x}{2} \right)} + 1\right)^{2}}{2 \tan{\left(\frac{x}{2} \right)}} + \frac{\left(\tan^{2}{\left(\frac{x}{2} \right)} + 1\right) \tan{\left(\frac{x}{2} \right)}}{2} + 8 \sin{\left(x \right)} \cos{\left(x \right)}$$
The graph
Derivative of сos(x)^2+log(tan(x/2))