Mister Exam

Other calculators


сos(x)^2+log(tan(x/2))

Derivative of сos(x)^2+log(tan(x/2))

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
   2         /   /x\\
cos (x) + log|tan|-||
             \   \2//
log(tan(x2))+cos2(x)\log{\left(\tan{\left(\frac{x}{2} \right)} \right)} + \cos^{2}{\left(x \right)}
cos(x)^2 + log(tan(x/2))
Detail solution
  1. Differentiate log(tan(x2))+cos2(x)\log{\left(\tan{\left(\frac{x}{2} \right)} \right)} + \cos^{2}{\left(x \right)} term by term:

    1. Let u=cos(x)u = \cos{\left(x \right)}.

    2. Apply the power rule: u2u^{2} goes to 2u2 u

    3. Then, apply the chain rule. Multiply by ddxcos(x)\frac{d}{d x} \cos{\left(x \right)}:

      1. The derivative of cosine is negative sine:

        ddxcos(x)=sin(x)\frac{d}{d x} \cos{\left(x \right)} = - \sin{\left(x \right)}

      The result of the chain rule is:

      2sin(x)cos(x)- 2 \sin{\left(x \right)} \cos{\left(x \right)}

    4. Let u=tan(x2)u = \tan{\left(\frac{x}{2} \right)}.

    5. The derivative of log(u)\log{\left(u \right)} is 1u\frac{1}{u}.

    6. Then, apply the chain rule. Multiply by ddxtan(x2)\frac{d}{d x} \tan{\left(\frac{x}{2} \right)}:

      1. Rewrite the function to be differentiated:

        tan(x2)=sin(x2)cos(x2)\tan{\left(\frac{x}{2} \right)} = \frac{\sin{\left(\frac{x}{2} \right)}}{\cos{\left(\frac{x}{2} \right)}}

      2. Apply the quotient rule, which is:

        ddxf(x)g(x)=f(x)ddxg(x)+g(x)ddxf(x)g2(x)\frac{d}{d x} \frac{f{\left(x \right)}}{g{\left(x \right)}} = \frac{- f{\left(x \right)} \frac{d}{d x} g{\left(x \right)} + g{\left(x \right)} \frac{d}{d x} f{\left(x \right)}}{g^{2}{\left(x \right)}}

        f(x)=sin(x2)f{\left(x \right)} = \sin{\left(\frac{x}{2} \right)} and g(x)=cos(x2)g{\left(x \right)} = \cos{\left(\frac{x}{2} \right)}.

        To find ddxf(x)\frac{d}{d x} f{\left(x \right)}:

        1. Let u=x2u = \frac{x}{2}.

        2. The derivative of sine is cosine:

          ddusin(u)=cos(u)\frac{d}{d u} \sin{\left(u \right)} = \cos{\left(u \right)}

        3. Then, apply the chain rule. Multiply by ddxx2\frac{d}{d x} \frac{x}{2}:

          1. The derivative of a constant times a function is the constant times the derivative of the function.

            1. Apply the power rule: xx goes to 11

            So, the result is: 12\frac{1}{2}

          The result of the chain rule is:

          cos(x2)2\frac{\cos{\left(\frac{x}{2} \right)}}{2}

        To find ddxg(x)\frac{d}{d x} g{\left(x \right)}:

        1. Let u=x2u = \frac{x}{2}.

        2. The derivative of cosine is negative sine:

          dducos(u)=sin(u)\frac{d}{d u} \cos{\left(u \right)} = - \sin{\left(u \right)}

        3. Then, apply the chain rule. Multiply by ddxx2\frac{d}{d x} \frac{x}{2}:

          1. The derivative of a constant times a function is the constant times the derivative of the function.

            1. Apply the power rule: xx goes to 11

            So, the result is: 12\frac{1}{2}

          The result of the chain rule is:

          sin(x2)2- \frac{\sin{\left(\frac{x}{2} \right)}}{2}

        Now plug in to the quotient rule:

        sin2(x2)2+cos2(x2)2cos2(x2)\frac{\frac{\sin^{2}{\left(\frac{x}{2} \right)}}{2} + \frac{\cos^{2}{\left(\frac{x}{2} \right)}}{2}}{\cos^{2}{\left(\frac{x}{2} \right)}}

      The result of the chain rule is:

      sin2(x2)2+cos2(x2)2cos2(x2)tan(x2)\frac{\frac{\sin^{2}{\left(\frac{x}{2} \right)}}{2} + \frac{\cos^{2}{\left(\frac{x}{2} \right)}}{2}}{\cos^{2}{\left(\frac{x}{2} \right)} \tan{\left(\frac{x}{2} \right)}}

    The result is: sin2(x2)2+cos2(x2)2cos2(x2)tan(x2)2sin(x)cos(x)\frac{\frac{\sin^{2}{\left(\frac{x}{2} \right)}}{2} + \frac{\cos^{2}{\left(\frac{x}{2} \right)}}{2}}{\cos^{2}{\left(\frac{x}{2} \right)} \tan{\left(\frac{x}{2} \right)}} - 2 \sin{\left(x \right)} \cos{\left(x \right)}

  2. Now simplify:

    2sin2(x)cos(x)+1(cos(x)+1)tan(x2)\frac{- 2 \sin^{2}{\left(x \right)} \cos{\left(x \right)} + 1}{\left(\cos{\left(x \right)} + 1\right) \tan{\left(\frac{x}{2} \right)}}


The answer is:

2sin2(x)cos(x)+1(cos(x)+1)tan(x2)\frac{- 2 \sin^{2}{\left(x \right)} \cos{\left(x \right)} + 1}{\left(\cos{\left(x \right)} + 1\right) \tan{\left(\frac{x}{2} \right)}}

The graph
02468-8-6-4-2-1010-200200
The first derivative [src]
       2/x\                  
    tan |-|                  
1       \2/                  
- + -------                  
2      2                     
----------- - 2*cos(x)*sin(x)
      /x\                    
   tan|-|                    
      \2/                    
tan2(x2)2+12tan(x2)2sin(x)cos(x)\frac{\frac{\tan^{2}{\left(\frac{x}{2} \right)}}{2} + \frac{1}{2}}{\tan{\left(\frac{x}{2} \right)}} - 2 \sin{\left(x \right)} \cos{\left(x \right)}
The second derivative [src]
                                                   2
       2/x\                           /       2/x\\ 
    tan |-|                           |1 + tan |-|| 
1       \2/        2           2      \        \2// 
- + ------- - 2*cos (x) + 2*sin (x) - --------------
2      2                                     2/x\   
                                        4*tan |-|   
                                              \2/   
(tan2(x2)+1)24tan2(x2)+2sin2(x)2cos2(x)+tan2(x2)2+12- \frac{\left(\tan^{2}{\left(\frac{x}{2} \right)} + 1\right)^{2}}{4 \tan^{2}{\left(\frac{x}{2} \right)}} + 2 \sin^{2}{\left(x \right)} - 2 \cos^{2}{\left(x \right)} + \frac{\tan^{2}{\left(\frac{x}{2} \right)}}{2} + \frac{1}{2}
The third derivative [src]
                                                      2                3
/       2/x\\    /x\                     /       2/x\\    /       2/x\\ 
|1 + tan |-||*tan|-|                     |1 + tan |-||    |1 + tan |-|| 
\        \2//    \2/                     \        \2//    \        \2// 
-------------------- + 8*cos(x)*sin(x) - -------------- + --------------
         2                                       /x\             3/x\   
                                            2*tan|-|        4*tan |-|   
                                                 \2/              \2/   
(tan2(x2)+1)34tan3(x2)(tan2(x2)+1)22tan(x2)+(tan2(x2)+1)tan(x2)2+8sin(x)cos(x)\frac{\left(\tan^{2}{\left(\frac{x}{2} \right)} + 1\right)^{3}}{4 \tan^{3}{\left(\frac{x}{2} \right)}} - \frac{\left(\tan^{2}{\left(\frac{x}{2} \right)} + 1\right)^{2}}{2 \tan{\left(\frac{x}{2} \right)}} + \frac{\left(\tan^{2}{\left(\frac{x}{2} \right)} + 1\right) \tan{\left(\frac{x}{2} \right)}}{2} + 8 \sin{\left(x \right)} \cos{\left(x \right)}
The graph
Derivative of сos(x)^2+log(tan(x/2))