Detail solution
-
Let .
-
-
Then, apply the chain rule. Multiply by :
-
Let .
-
The derivative of cosine is negative sine:
-
Then, apply the chain rule. Multiply by :
-
The derivative of a constant times a function is the constant times the derivative of the function.
-
Apply the power rule: goes to
So, the result is:
The result of the chain rule is:
The result of the chain rule is:
The answer is:
The first derivative
[src]
cos(3*x)
-3*6 *log(6)*sin(3*x)
$$- 3 \cdot 6^{\cos{\left(3 x \right)}} \log{\left(6 \right)} \sin{\left(3 x \right)}$$
The second derivative
[src]
cos(3*x) / 2 \
9*6 *\-cos(3*x) + sin (3*x)*log(6)/*log(6)
$$9 \cdot 6^{\cos{\left(3 x \right)}} \left(\log{\left(6 \right)} \sin^{2}{\left(3 x \right)} - \cos{\left(3 x \right)}\right) \log{\left(6 \right)}$$
The third derivative
[src]
cos(3*x) / 2 2 \
27*6 *\1 - log (6)*sin (3*x) + 3*cos(3*x)*log(6)/*log(6)*sin(3*x)
$$27 \cdot 6^{\cos{\left(3 x \right)}} \left(- \log{\left(6 \right)}^{2} \sin^{2}{\left(3 x \right)} + 3 \log{\left(6 \right)} \cos{\left(3 x \right)} + 1\right) \log{\left(6 \right)} \sin{\left(3 x \right)}$$