Mister Exam

Derivative of sinxe^cosx

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
        cos(x)
sin(x)*E      
$$e^{\cos{\left(x \right)}} \sin{\left(x \right)}$$
sin(x)*E^cos(x)
Detail solution
  1. Apply the product rule:

    ; to find :

    1. The derivative of sine is cosine:

    ; to find :

    1. Let .

    2. The derivative of is itself.

    3. Then, apply the chain rule. Multiply by :

      1. The derivative of cosine is negative sine:

      The result of the chain rule is:

    The result is:

  2. Now simplify:


The answer is:

The graph
The first derivative [src]
        cos(x)      2     cos(x)
cos(x)*e       - sin (x)*e      
$$- e^{\cos{\left(x \right)}} \sin^{2}{\left(x \right)} + e^{\cos{\left(x \right)}} \cos{\left(x \right)}$$
The second derivative [src]
/        2              \  cos(x)       
\-1 + sin (x) - 3*cos(x)/*e      *sin(x)
$$\left(\sin^{2}{\left(x \right)} - 3 \cos{\left(x \right)} - 1\right) e^{\cos{\left(x \right)}} \sin{\left(x \right)}$$
The third derivative [src]
/               2         2    /       2              \     /   2            \       \  cos(x)
\-cos(x) + 3*sin (x) + sin (x)*\1 - sin (x) + 3*cos(x)/ + 3*\sin (x) - cos(x)/*cos(x)/*e      
$$\left(3 \left(\sin^{2}{\left(x \right)} - \cos{\left(x \right)}\right) \cos{\left(x \right)} + \left(- \sin^{2}{\left(x \right)} + 3 \cos{\left(x \right)} + 1\right) \sin^{2}{\left(x \right)} + 3 \sin^{2}{\left(x \right)} - \cos{\left(x \right)}\right) e^{\cos{\left(x \right)}}$$