Mister Exam

Other calculators


(sin(x)+x^2)/cot(2*x)

Derivative of (sin(x)+x^2)/cot(2*x)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
          2
sin(x) + x 
-----------
  cot(2*x) 
$$\frac{x^{2} + \sin{\left(x \right)}}{\cot{\left(2 x \right)}}$$
(sin(x) + x^2)/cot(2*x)
Detail solution
  1. Apply the quotient rule, which is:

    and .

    To find :

    1. Differentiate term by term:

      1. Apply the power rule: goes to

      2. The derivative of sine is cosine:

      The result is:

    To find :

    1. There are multiple ways to do this derivative.

      Method #1

      1. Rewrite the function to be differentiated:

      2. Let .

      3. Apply the power rule: goes to

      4. Then, apply the chain rule. Multiply by :

        1. Rewrite the function to be differentiated:

        2. Apply the quotient rule, which is:

          and .

          To find :

          1. Let .

          2. The derivative of sine is cosine:

          3. Then, apply the chain rule. Multiply by :

            1. The derivative of a constant times a function is the constant times the derivative of the function.

              1. Apply the power rule: goes to

              So, the result is:

            The result of the chain rule is:

          To find :

          1. Let .

          2. The derivative of cosine is negative sine:

          3. Then, apply the chain rule. Multiply by :

            1. The derivative of a constant times a function is the constant times the derivative of the function.

              1. Apply the power rule: goes to

              So, the result is:

            The result of the chain rule is:

          Now plug in to the quotient rule:

        The result of the chain rule is:

      Method #2

      1. Rewrite the function to be differentiated:

      2. Apply the quotient rule, which is:

        and .

        To find :

        1. Let .

        2. The derivative of cosine is negative sine:

        3. Then, apply the chain rule. Multiply by :

          1. The derivative of a constant times a function is the constant times the derivative of the function.

            1. Apply the power rule: goes to

            So, the result is:

          The result of the chain rule is:

        To find :

        1. Let .

        2. The derivative of sine is cosine:

        3. Then, apply the chain rule. Multiply by :

          1. The derivative of a constant times a function is the constant times the derivative of the function.

            1. Apply the power rule: goes to

            So, the result is:

          The result of the chain rule is:

        Now plug in to the quotient rule:

    Now plug in to the quotient rule:

  2. Now simplify:


The answer is:

The graph
The first derivative [src]
               /         2     \ /          2\
2*x + cos(x)   \2 + 2*cot (2*x)/*\sin(x) + x /
------------ + -------------------------------
  cot(2*x)                   2                
                          cot (2*x)           
$$\frac{2 x + \cos{\left(x \right)}}{\cot{\left(2 x \right)}} + \frac{\left(x^{2} + \sin{\left(x \right)}\right) \left(2 \cot^{2}{\left(2 x \right)} + 2\right)}{\cot^{2}{\left(2 x \right)}}$$
The second derivative [src]
               /       2     \                                    /            2     \              
             4*\1 + cot (2*x)/*(2*x + cos(x))     /       2     \ |     1 + cot (2*x)| / 2         \
2 - sin(x) + -------------------------------- + 8*\1 + cot (2*x)/*|-1 + -------------|*\x  + sin(x)/
                         cot(2*x)                                 |          2       |              
                                                                  \       cot (2*x)  /              
----------------------------------------------------------------------------------------------------
                                              cot(2*x)                                              
$$\frac{\frac{4 \left(2 x + \cos{\left(x \right)}\right) \left(\cot^{2}{\left(2 x \right)} + 1\right)}{\cot{\left(2 x \right)}} + 8 \left(x^{2} + \sin{\left(x \right)}\right) \left(\frac{\cot^{2}{\left(2 x \right)} + 1}{\cot^{2}{\left(2 x \right)}} - 1\right) \left(\cot^{2}{\left(2 x \right)} + 1\right) - \sin{\left(x \right)} + 2}{\cot{\left(2 x \right)}}$$
The third derivative [src]
                                                                                                                                                 /            2     \               
                                                                                                                                 /       2     \ |     1 + cot (2*x)|               
                              /                                   2                    3\                                     24*\1 + cot (2*x)/*|-1 + -------------|*(2*x + cos(x))
                              |                    /       2     \      /       2     \ |     /       2     \                                    |          2       |               
   cos(x)       / 2         \ |         2        5*\1 + cot (2*x)/    3*\1 + cot (2*x)/ |   6*\1 + cot (2*x)/*(-2 + sin(x))                      \       cot (2*x)  /               
- -------- + 16*\x  + sin(x)/*|2 + 2*cot (2*x) - ------------------ + ------------------| - ------------------------------- + ------------------------------------------------------
  cot(2*x)                    |                         2                    4          |                 2                                          cot(2*x)                       
                              \                      cot (2*x)            cot (2*x)     /              cot (2*x)                                                                    
$$\frac{24 \left(2 x + \cos{\left(x \right)}\right) \left(\frac{\cot^{2}{\left(2 x \right)} + 1}{\cot^{2}{\left(2 x \right)}} - 1\right) \left(\cot^{2}{\left(2 x \right)} + 1\right)}{\cot{\left(2 x \right)}} + 16 \left(x^{2} + \sin{\left(x \right)}\right) \left(\frac{3 \left(\cot^{2}{\left(2 x \right)} + 1\right)^{3}}{\cot^{4}{\left(2 x \right)}} - \frac{5 \left(\cot^{2}{\left(2 x \right)} + 1\right)^{2}}{\cot^{2}{\left(2 x \right)}} + 2 \cot^{2}{\left(2 x \right)} + 2\right) - \frac{6 \left(\sin{\left(x \right)} - 2\right) \left(\cot^{2}{\left(2 x \right)} + 1\right)}{\cot^{2}{\left(2 x \right)}} - \frac{\cos{\left(x \right)}}{\cot{\left(2 x \right)}}$$
The graph
Derivative of (sin(x)+x^2)/cot(2*x)