Mister Exam

Other calculators


sinx*cos^3x^2

Derivative of sinx*cos^3x^2

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
          9   
sin(x)*cos (x)
$$\sin{\left(x \right)} \cos^{9}{\left(x \right)}$$
Detail solution
  1. Apply the product rule:

    ; to find :

    1. The derivative of sine is cosine:

    ; to find :

    1. Let .

    2. Apply the power rule: goes to

    3. Then, apply the chain rule. Multiply by :

      1. The derivative of cosine is negative sine:

      The result of the chain rule is:

    The result is:

  2. Now simplify:


The answer is:

The graph
The first derivative [src]
   10           8       2   
cos  (x) - 9*cos (x)*sin (x)
$$- 9 \sin^{2}{\left(x \right)} \cos^{8}{\left(x \right)} + \cos^{10}{\left(x \right)}$$
The second derivative [src]
   7    /        2            2   \       
cos (x)*\- 28*cos (x) + 72*sin (x)/*sin(x)
$$\left(72 \sin^{2}{\left(x \right)} - 28 \cos^{2}{\left(x \right)}\right) \sin{\left(x \right)} \cos^{7}{\left(x \right)}$$
The third derivative [src]
   6    /     4           2    /        2            2   \         2       2            2    /     2           2   \\
cos (x)*\- cos (x) - 9*sin (x)*\- 25*cos (x) + 56*sin (x)/ + 27*cos (x)*sin (x) + 27*cos (x)*\- cos (x) + 8*sin (x)//
$$\left(27 \left(8 \sin^{2}{\left(x \right)} - \cos^{2}{\left(x \right)}\right) \cos^{2}{\left(x \right)} - 9 \left(56 \sin^{2}{\left(x \right)} - 25 \cos^{2}{\left(x \right)}\right) \sin^{2}{\left(x \right)} + 27 \sin^{2}{\left(x \right)} \cos^{2}{\left(x \right)} - \cos^{4}{\left(x \right)}\right) \cos^{6}{\left(x \right)}$$
The graph
Derivative of sinx*cos^3x^2