Mister Exam

Derivative of sin(x)*asin(x)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
sin(x)*asin(x)
$$\sin{\left(x \right)} \operatorname{asin}{\left(x \right)}$$
sin(x)*asin(x)
The graph
The first derivative [src]
   sin(x)                   
----------- + asin(x)*cos(x)
   ________                 
  /      2                  
\/  1 - x                   
$$\cos{\left(x \right)} \operatorname{asin}{\left(x \right)} + \frac{\sin{\left(x \right)}}{\sqrt{1 - x^{2}}}$$
The second derivative [src]
                    2*cos(x)      x*sin(x) 
-asin(x)*sin(x) + ----------- + -----------
                     ________           3/2
                    /      2    /     2\   
                  \/  1 - x     \1 - x /   
$$\frac{x \sin{\left(x \right)}}{\left(1 - x^{2}\right)^{\frac{3}{2}}} - \sin{\left(x \right)} \operatorname{asin}{\left(x \right)} + \frac{2 \cos{\left(x \right)}}{\sqrt{1 - x^{2}}}$$
The third derivative [src]
                                /          2 \                     
                                |       3*x  |                     
                                |-1 + -------|*sin(x)              
                                |           2|                     
                    3*sin(x)    \     -1 + x /           3*x*cos(x)
-asin(x)*cos(x) - ----------- - --------------------- + -----------
                     ________                3/2                3/2
                    /      2         /     2\           /     2\   
                  \/  1 - x          \1 - x /           \1 - x /   
$$\frac{3 x \cos{\left(x \right)}}{\left(1 - x^{2}\right)^{\frac{3}{2}}} - \cos{\left(x \right)} \operatorname{asin}{\left(x \right)} - \frac{3 \sin{\left(x \right)}}{\sqrt{1 - x^{2}}} - \frac{\left(\frac{3 x^{2}}{x^{2} - 1} - 1\right) \sin{\left(x \right)}}{\left(1 - x^{2}\right)^{\frac{3}{2}}}$$
The graph
Derivative of sin(x)*asin(x)