Mister Exam

Derivative of ctg(x/7)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
   /x\
cot|-|
   \7/
cot(x7)\cot{\left(\frac{x}{7} \right)}
cot(x/7)
Detail solution
  1. There are multiple ways to do this derivative.

    Method #1

    1. Rewrite the function to be differentiated:

      cot(x7)=1tan(x7)\cot{\left(\frac{x}{7} \right)} = \frac{1}{\tan{\left(\frac{x}{7} \right)}}

    2. Let u=tan(x7)u = \tan{\left(\frac{x}{7} \right)}.

    3. Apply the power rule: 1u\frac{1}{u} goes to 1u2- \frac{1}{u^{2}}

    4. Then, apply the chain rule. Multiply by ddxtan(x7)\frac{d}{d x} \tan{\left(\frac{x}{7} \right)}:

      1. Rewrite the function to be differentiated:

        tan(x7)=sin(x7)cos(x7)\tan{\left(\frac{x}{7} \right)} = \frac{\sin{\left(\frac{x}{7} \right)}}{\cos{\left(\frac{x}{7} \right)}}

      2. Apply the quotient rule, which is:

        ddxf(x)g(x)=f(x)ddxg(x)+g(x)ddxf(x)g2(x)\frac{d}{d x} \frac{f{\left(x \right)}}{g{\left(x \right)}} = \frac{- f{\left(x \right)} \frac{d}{d x} g{\left(x \right)} + g{\left(x \right)} \frac{d}{d x} f{\left(x \right)}}{g^{2}{\left(x \right)}}

        f(x)=sin(x7)f{\left(x \right)} = \sin{\left(\frac{x}{7} \right)} and g(x)=cos(x7)g{\left(x \right)} = \cos{\left(\frac{x}{7} \right)}.

        To find ddxf(x)\frac{d}{d x} f{\left(x \right)}:

        1. Let u=x7u = \frac{x}{7}.

        2. The derivative of sine is cosine:

          ddusin(u)=cos(u)\frac{d}{d u} \sin{\left(u \right)} = \cos{\left(u \right)}

        3. Then, apply the chain rule. Multiply by ddxx7\frac{d}{d x} \frac{x}{7}:

          1. The derivative of a constant times a function is the constant times the derivative of the function.

            1. Apply the power rule: xx goes to 11

            So, the result is: 17\frac{1}{7}

          The result of the chain rule is:

          cos(x7)7\frac{\cos{\left(\frac{x}{7} \right)}}{7}

        To find ddxg(x)\frac{d}{d x} g{\left(x \right)}:

        1. Let u=x7u = \frac{x}{7}.

        2. The derivative of cosine is negative sine:

          dducos(u)=sin(u)\frac{d}{d u} \cos{\left(u \right)} = - \sin{\left(u \right)}

        3. Then, apply the chain rule. Multiply by ddxx7\frac{d}{d x} \frac{x}{7}:

          1. The derivative of a constant times a function is the constant times the derivative of the function.

            1. Apply the power rule: xx goes to 11

            So, the result is: 17\frac{1}{7}

          The result of the chain rule is:

          sin(x7)7- \frac{\sin{\left(\frac{x}{7} \right)}}{7}

        Now plug in to the quotient rule:

        sin2(x7)7+cos2(x7)7cos2(x7)\frac{\frac{\sin^{2}{\left(\frac{x}{7} \right)}}{7} + \frac{\cos^{2}{\left(\frac{x}{7} \right)}}{7}}{\cos^{2}{\left(\frac{x}{7} \right)}}

      The result of the chain rule is:

      sin2(x7)7+cos2(x7)7cos2(x7)tan2(x7)- \frac{\frac{\sin^{2}{\left(\frac{x}{7} \right)}}{7} + \frac{\cos^{2}{\left(\frac{x}{7} \right)}}{7}}{\cos^{2}{\left(\frac{x}{7} \right)} \tan^{2}{\left(\frac{x}{7} \right)}}

    Method #2

    1. Rewrite the function to be differentiated:

      cot(x7)=cos(x7)sin(x7)\cot{\left(\frac{x}{7} \right)} = \frac{\cos{\left(\frac{x}{7} \right)}}{\sin{\left(\frac{x}{7} \right)}}

    2. Apply the quotient rule, which is:

      ddxf(x)g(x)=f(x)ddxg(x)+g(x)ddxf(x)g2(x)\frac{d}{d x} \frac{f{\left(x \right)}}{g{\left(x \right)}} = \frac{- f{\left(x \right)} \frac{d}{d x} g{\left(x \right)} + g{\left(x \right)} \frac{d}{d x} f{\left(x \right)}}{g^{2}{\left(x \right)}}

      f(x)=cos(x7)f{\left(x \right)} = \cos{\left(\frac{x}{7} \right)} and g(x)=sin(x7)g{\left(x \right)} = \sin{\left(\frac{x}{7} \right)}.

      To find ddxf(x)\frac{d}{d x} f{\left(x \right)}:

      1. Let u=x7u = \frac{x}{7}.

      2. The derivative of cosine is negative sine:

        dducos(u)=sin(u)\frac{d}{d u} \cos{\left(u \right)} = - \sin{\left(u \right)}

      3. Then, apply the chain rule. Multiply by ddxx7\frac{d}{d x} \frac{x}{7}:

        1. The derivative of a constant times a function is the constant times the derivative of the function.

          1. Apply the power rule: xx goes to 11

          So, the result is: 17\frac{1}{7}

        The result of the chain rule is:

        sin(x7)7- \frac{\sin{\left(\frac{x}{7} \right)}}{7}

      To find ddxg(x)\frac{d}{d x} g{\left(x \right)}:

      1. Let u=x7u = \frac{x}{7}.

      2. The derivative of sine is cosine:

        ddusin(u)=cos(u)\frac{d}{d u} \sin{\left(u \right)} = \cos{\left(u \right)}

      3. Then, apply the chain rule. Multiply by ddxx7\frac{d}{d x} \frac{x}{7}:

        1. The derivative of a constant times a function is the constant times the derivative of the function.

          1. Apply the power rule: xx goes to 11

          So, the result is: 17\frac{1}{7}

        The result of the chain rule is:

        cos(x7)7\frac{\cos{\left(\frac{x}{7} \right)}}{7}

      Now plug in to the quotient rule:

      sin2(x7)7cos2(x7)7sin2(x7)\frac{- \frac{\sin^{2}{\left(\frac{x}{7} \right)}}{7} - \frac{\cos^{2}{\left(\frac{x}{7} \right)}}{7}}{\sin^{2}{\left(\frac{x}{7} \right)}}

  2. Now simplify:

    17sin2(x7)- \frac{1}{7 \sin^{2}{\left(\frac{x}{7} \right)}}


The answer is:

17sin2(x7)- \frac{1}{7 \sin^{2}{\left(\frac{x}{7} \right)}}

The graph
02468-8-6-4-2-1010-10001000
The first derivative [src]
         2/x\
      cot |-|
  1       \7/
- - - -------
  7      7   
cot2(x7)717- \frac{\cot^{2}{\left(\frac{x}{7} \right)}}{7} - \frac{1}{7}
The second derivative [src]
  /       2/x\\    /x\
2*|1 + cot |-||*cot|-|
  \        \7//    \7/
----------------------
          49          
2(cot2(x7)+1)cot(x7)49\frac{2 \left(\cot^{2}{\left(\frac{x}{7} \right)} + 1\right) \cot{\left(\frac{x}{7} \right)}}{49}
The third derivative [src]
   /       2/x\\ /         2/x\\
-2*|1 + cot |-||*|1 + 3*cot |-||
   \        \7// \          \7//
--------------------------------
              343               
2(cot2(x7)+1)(3cot2(x7)+1)343- \frac{2 \left(\cot^{2}{\left(\frac{x}{7} \right)} + 1\right) \left(3 \cot^{2}{\left(\frac{x}{7} \right)} + 1\right)}{343}
The graph
Derivative of ctg(x/7)