Mister Exam

Derivative of sin(x)/(x+1)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
sin(x)
------
x + 1 
$$\frac{\sin{\left(x \right)}}{x + 1}$$
sin(x)/(x + 1)
Detail solution
  1. Apply the quotient rule, which is:

    and .

    To find :

    1. The derivative of sine is cosine:

    To find :

    1. Differentiate term by term:

      1. The derivative of the constant is zero.

      2. Apply the power rule: goes to

      The result is:

    Now plug in to the quotient rule:


The answer is:

The graph
The first derivative [src]
cos(x)    sin(x) 
------ - --------
x + 1           2
         (x + 1) 
$$\frac{\cos{\left(x \right)}}{x + 1} - \frac{\sin{\left(x \right)}}{\left(x + 1\right)^{2}}$$
The second derivative [src]
          2*cos(x)   2*sin(x)
-sin(x) - -------- + --------
           1 + x            2
                     (1 + x) 
-----------------------------
            1 + x            
$$\frac{- \sin{\left(x \right)} - \frac{2 \cos{\left(x \right)}}{x + 1} + \frac{2 \sin{\left(x \right)}}{\left(x + 1\right)^{2}}}{x + 1}$$
The third derivative [src]
          6*sin(x)   3*sin(x)   6*cos(x)
-cos(x) - -------- + -------- + --------
                 3    1 + x            2
          (1 + x)               (1 + x) 
----------------------------------------
                 1 + x                  
$$\frac{- \cos{\left(x \right)} + \frac{3 \sin{\left(x \right)}}{x + 1} + \frac{6 \cos{\left(x \right)}}{\left(x + 1\right)^{2}} - \frac{6 \sin{\left(x \right)}}{\left(x + 1\right)^{3}}}{x + 1}$$
The graph
Derivative of sin(x)/(x+1)