sin(x) ---------- 3 ________ \/ x + 10
sin(x)/(x + 10)^(1/3)
Apply the quotient rule, which is:
and .
To find :
The derivative of sine is cosine:
To find :
Let .
Apply the power rule: goes to
Then, apply the chain rule. Multiply by :
Differentiate term by term:
The derivative of the constant is zero.
Apply the power rule: goes to
The result is:
The result of the chain rule is:
Now plug in to the quotient rule:
Now simplify:
The answer is:
cos(x) sin(x) ---------- - ------------- 3 ________ 4/3 \/ x + 10 3*(x + 10)
2*cos(x) 4*sin(x)
-sin(x) - ---------- + -----------
3*(10 + x) 2
9*(10 + x)
----------------------------------
3 ________
\/ 10 + x
sin(x) 28*sin(x) 4*cos(x)
-cos(x) + ------ - ------------ + -----------
10 + x 3 2
27*(10 + x) 3*(10 + x)
---------------------------------------------
3 ________
\/ 10 + x