Mister Exam

Other calculators

Derivative of (sin(x)/((x+10)^1/3))

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  sin(x)  
----------
3 ________
\/ x + 10 
$$\frac{\sin{\left(x \right)}}{\sqrt[3]{x + 10}}$$
sin(x)/(x + 10)^(1/3)
Detail solution
  1. Apply the quotient rule, which is:

    and .

    To find :

    1. The derivative of sine is cosine:

    To find :

    1. Let .

    2. Apply the power rule: goes to

    3. Then, apply the chain rule. Multiply by :

      1. Differentiate term by term:

        1. The derivative of the constant is zero.

        2. Apply the power rule: goes to

        The result is:

      The result of the chain rule is:

    Now plug in to the quotient rule:

  2. Now simplify:


The answer is:

The first derivative [src]
  cos(x)         sin(x)   
---------- - -------------
3 ________             4/3
\/ x + 10    3*(x + 10)   
$$\frac{\cos{\left(x \right)}}{\sqrt[3]{x + 10}} - \frac{\sin{\left(x \right)}}{3 \left(x + 10\right)^{\frac{4}{3}}}$$
The second derivative [src]
           2*cos(x)      4*sin(x) 
-sin(x) - ---------- + -----------
          3*(10 + x)             2
                       9*(10 + x) 
----------------------------------
            3 ________            
            \/ 10 + x             
$$\frac{- \sin{\left(x \right)} - \frac{2 \cos{\left(x \right)}}{3 \left(x + 10\right)} + \frac{4 \sin{\left(x \right)}}{9 \left(x + 10\right)^{2}}}{\sqrt[3]{x + 10}}$$
The third derivative [src]
          sin(x)    28*sin(x)       4*cos(x) 
-cos(x) + ------ - ------------ + -----------
          10 + x              3             2
                   27*(10 + x)    3*(10 + x) 
---------------------------------------------
                  3 ________                 
                  \/ 10 + x                  
$$\frac{- \cos{\left(x \right)} + \frac{\sin{\left(x \right)}}{x + 10} + \frac{4 \cos{\left(x \right)}}{3 \left(x + 10\right)^{2}} - \frac{28 \sin{\left(x \right)}}{27 \left(x + 10\right)^{3}}}{\sqrt[3]{x + 10}}$$