sin(x) ----------- / 2 \ log\x + 1/
d / sin(x) \ --|-----------| dx| / 2 \| \log\x + 1//
Apply the quotient rule, which is:
and .
To find :
The derivative of sine is cosine:
To find :
Let .
The derivative of is .
Then, apply the chain rule. Multiply by :
Differentiate term by term:
Apply the power rule: goes to
The derivative of the constant is zero.
The result is:
The result of the chain rule is:
Now plug in to the quotient rule:
Now simplify:
The answer is:
cos(x) 2*x*sin(x) ----------- - --------------------- / 2 \ / 2 \ 2/ 2 \ log\x + 1/ \x + 1/*log \x + 1/
/ 2 2 \ | 2*x 4*x | 2*|-1 + ------ + --------------------|*sin(x) | 2 / 2\ / 2\| 4*x*cos(x) \ 1 + x \1 + x /*log\1 + x // -sin(x) - -------------------- + --------------------------------------------- / 2\ / 2\ / 2\ / 2\ \1 + x /*log\1 + x / \1 + x /*log\1 + x / ------------------------------------------------------------------------------ / 2\ log\1 + x /
/ 2 2 \ / 2 2 2 \ | 2*x 4*x | | 6 4*x 12*x 12*x | 6*|-1 + ------ + --------------------|*cos(x) 4*x*|-3 - ----------- + ------ + -------------------- + ---------------------|*sin(x) | 2 / 2\ / 2\| | / 2\ 2 / 2\ / 2\ / 2\ 2/ 2\| 6*x*sin(x) \ 1 + x \1 + x /*log\1 + x // \ log\1 + x / 1 + x \1 + x /*log\1 + x / \1 + x /*log \1 + x // -cos(x) + -------------------- + --------------------------------------------- - ------------------------------------------------------------------------------------- / 2\ / 2\ / 2\ / 2\ 2 \1 + x /*log\1 + x / \1 + x /*log\1 + x / / 2\ / 2\ \1 + x / *log\1 + x / ---------------------------------------------------------------------------------------------------------------------------------------------------------------------- / 2\ log\1 + x /