Mister Exam

Other calculators


(sin(x))/log(x^2+1)

Derivative of (sin(x))/log(x^2+1)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
   sin(x)  
-----------
   / 2    \
log\x  + 1/
$$\frac{\sin{\left(x \right)}}{\log{\left(x^{2} + 1 \right)}}$$
d /   sin(x)  \
--|-----------|
dx|   / 2    \|
  \log\x  + 1//
$$\frac{d}{d x} \frac{\sin{\left(x \right)}}{\log{\left(x^{2} + 1 \right)}}$$
Detail solution
  1. Apply the quotient rule, which is:

    and .

    To find :

    1. The derivative of sine is cosine:

    To find :

    1. Let .

    2. The derivative of is .

    3. Then, apply the chain rule. Multiply by :

      1. Differentiate term by term:

        1. Apply the power rule: goes to

        2. The derivative of the constant is zero.

        The result is:

      The result of the chain rule is:

    Now plug in to the quotient rule:

  2. Now simplify:


The answer is:

The graph
The first derivative [src]
   cos(x)           2*x*sin(x)     
----------- - ---------------------
   / 2    \   / 2    \    2/ 2    \
log\x  + 1/   \x  + 1/*log \x  + 1/
$$- \frac{2 x \sin{\left(x \right)}}{\left(x^{2} + 1\right) \log{\left(x^{2} + 1 \right)}^{2}} + \frac{\cos{\left(x \right)}}{\log{\left(x^{2} + 1 \right)}}$$
The second derivative [src]
                                   /         2               2        \       
                                   |      2*x             4*x         |       
                                 2*|-1 + ------ + --------------------|*sin(x)
                                   |          2   /     2\    /     2\|       
               4*x*cos(x)          \     1 + x    \1 + x /*log\1 + x //       
-sin(x) - -------------------- + ---------------------------------------------
          /     2\    /     2\                /     2\    /     2\            
          \1 + x /*log\1 + x /                \1 + x /*log\1 + x /            
------------------------------------------------------------------------------
                                    /     2\                                  
                                 log\1 + x /                                  
$$\frac{- \frac{4 x \cos{\left(x \right)}}{\left(x^{2} + 1\right) \log{\left(x^{2} + 1 \right)}} - \sin{\left(x \right)} + \frac{2 \cdot \left(\frac{2 x^{2}}{x^{2} + 1} + \frac{4 x^{2}}{\left(x^{2} + 1\right) \log{\left(x^{2} + 1 \right)}} - 1\right) \sin{\left(x \right)}}{\left(x^{2} + 1\right) \log{\left(x^{2} + 1 \right)}}}{\log{\left(x^{2} + 1 \right)}}$$
The third derivative [src]
                                   /         2               2        \              /                       2               2                       2        \       
                                   |      2*x             4*x         |              |          6         4*x            12*x                    12*x         |       
                                 6*|-1 + ------ + --------------------|*cos(x)   4*x*|-3 - ----------- + ------ + -------------------- + ---------------------|*sin(x)
                                   |          2   /     2\    /     2\|              |        /     2\        2   /     2\    /     2\   /     2\    2/     2\|       
               6*x*sin(x)          \     1 + x    \1 + x /*log\1 + x //              \     log\1 + x /   1 + x    \1 + x /*log\1 + x /   \1 + x /*log \1 + x //       
-cos(x) + -------------------- + --------------------------------------------- - -------------------------------------------------------------------------------------
          /     2\    /     2\                /     2\    /     2\                                                       2                                            
          \1 + x /*log\1 + x /                \1 + x /*log\1 + x /                                               /     2\     /     2\                                
                                                                                                                 \1 + x / *log\1 + x /                                
----------------------------------------------------------------------------------------------------------------------------------------------------------------------
                                                                                /     2\                                                                              
                                                                             log\1 + x /                                                                              
$$\frac{\frac{6 x \sin{\left(x \right)}}{\left(x^{2} + 1\right) \log{\left(x^{2} + 1 \right)}} - \frac{4 x \left(\frac{4 x^{2}}{x^{2} + 1} + \frac{12 x^{2}}{\left(x^{2} + 1\right) \log{\left(x^{2} + 1 \right)}} + \frac{12 x^{2}}{\left(x^{2} + 1\right) \log{\left(x^{2} + 1 \right)}^{2}} - 3 - \frac{6}{\log{\left(x^{2} + 1 \right)}}\right) \sin{\left(x \right)}}{\left(x^{2} + 1\right)^{2} \log{\left(x^{2} + 1 \right)}} - \cos{\left(x \right)} + \frac{6 \cdot \left(\frac{2 x^{2}}{x^{2} + 1} + \frac{4 x^{2}}{\left(x^{2} + 1\right) \log{\left(x^{2} + 1 \right)}} - 1\right) \cos{\left(x \right)}}{\left(x^{2} + 1\right) \log{\left(x^{2} + 1 \right)}}}{\log{\left(x^{2} + 1 \right)}}$$
The graph
Derivative of (sin(x))/log(x^2+1)