Mister Exam

Other calculators

Derivative of sin(x/5-pi/3)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
   /x   pi\
sin|- - --|
   \5   3 /
$$\sin{\left(\frac{x}{5} - \frac{\pi}{3} \right)}$$
sin(x/5 - pi/3)
Detail solution
  1. Let .

  2. The derivative of sine is cosine:

  3. Then, apply the chain rule. Multiply by :

    1. Differentiate term by term:

      1. The derivative of a constant times a function is the constant times the derivative of the function.

        1. Apply the power rule: goes to

        So, the result is:

      2. The derivative of the constant is zero.

      The result is:

    The result of the chain rule is:

  4. Now simplify:


The answer is:

The graph
The first derivative [src]
   /x   pi\
cos|- - --|
   \5   3 /
-----------
     5     
$$\frac{\cos{\left(\frac{x}{5} - \frac{\pi}{3} \right)}}{5}$$
The second derivative [src]
    /-5*pi + 3*x\ 
-sin|-----------| 
    \     15    / 
------------------
        25        
$$- \frac{\sin{\left(\frac{3 x - 5 \pi}{15} \right)}}{25}$$
The third derivative [src]
    /-5*pi + 3*x\ 
-cos|-----------| 
    \     15    / 
------------------
       125        
$$- \frac{\cos{\left(\frac{3 x - 5 \pi}{15} \right)}}{125}$$