Mister Exam

Other calculators

Derivative of sinx/(3x^2-9)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
 sin(x) 
--------
   2    
3*x  - 9
$$\frac{\sin{\left(x \right)}}{3 x^{2} - 9}$$
sin(x)/(3*x^2 - 9)
Detail solution
  1. Apply the quotient rule, which is:

    and .

    To find :

    1. The derivative of sine is cosine:

    To find :

    1. Differentiate term by term:

      1. The derivative of the constant is zero.

      2. The derivative of a constant times a function is the constant times the derivative of the function.

        1. Apply the power rule: goes to

        So, the result is:

      The result is:

    Now plug in to the quotient rule:

  2. Now simplify:


The answer is:

The graph
The first derivative [src]
 cos(x)     6*x*sin(x)
-------- - -----------
   2                 2
3*x  - 9   /   2    \ 
           \3*x  - 9/ 
$$- \frac{6 x \sin{\left(x \right)}}{\left(3 x^{2} - 9\right)^{2}} + \frac{\cos{\left(x \right)}}{3 x^{2} - 9}$$
The second derivative [src]
                         /          2 \       
                         |       4*x  |       
                       2*|-1 + -------|*sin(x)
                         |           2|       
          4*x*cos(x)     \     -3 + x /       
-sin(x) - ---------- + -----------------------
                 2                   2        
           -3 + x              -3 + x         
----------------------------------------------
                   /      2\                  
                 3*\-3 + x /                  
$$\frac{- \frac{4 x \cos{\left(x \right)}}{x^{2} - 3} - \sin{\left(x \right)} + \frac{2 \left(\frac{4 x^{2}}{x^{2} - 3} - 1\right) \sin{\left(x \right)}}{x^{2} - 3}}{3 \left(x^{2} - 3\right)}$$
The third derivative [src]
                          /          2 \              /          2 \       
                          |       4*x  |              |       2*x  |       
                        2*|-1 + -------|*cos(x)   8*x*|-1 + -------|*sin(x)
                          |           2|              |           2|       
  cos(x)   2*x*sin(x)     \     -3 + x /              \     -3 + x /       
- ------ + ---------- + ----------------------- - -------------------------
    3             2                   2                            2       
            -3 + x              -3 + x                    /      2\        
                                                          \-3 + x /        
---------------------------------------------------------------------------
                                        2                                  
                                  -3 + x                                   
$$\frac{\frac{2 x \sin{\left(x \right)}}{x^{2} - 3} - \frac{8 x \left(\frac{2 x^{2}}{x^{2} - 3} - 1\right) \sin{\left(x \right)}}{\left(x^{2} - 3\right)^{2}} - \frac{\cos{\left(x \right)}}{3} + \frac{2 \left(\frac{4 x^{2}}{x^{2} - 3} - 1\right) \cos{\left(x \right)}}{x^{2} - 3}}{x^{2} - 3}$$