sin(x) -------- 2 3*x - 9
sin(x)/(3*x^2 - 9)
Apply the quotient rule, which is:
and .
To find :
The derivative of sine is cosine:
To find :
Differentiate term by term:
The derivative of the constant is zero.
The derivative of a constant times a function is the constant times the derivative of the function.
Apply the power rule: goes to
So, the result is:
The result is:
Now plug in to the quotient rule:
Now simplify:
The answer is:
cos(x) 6*x*sin(x) -------- - ----------- 2 2 3*x - 9 / 2 \ \3*x - 9/
/ 2 \ | 4*x | 2*|-1 + -------|*sin(x) | 2| 4*x*cos(x) \ -3 + x / -sin(x) - ---------- + ----------------------- 2 2 -3 + x -3 + x ---------------------------------------------- / 2\ 3*\-3 + x /
/ 2 \ / 2 \ | 4*x | | 2*x | 2*|-1 + -------|*cos(x) 8*x*|-1 + -------|*sin(x) | 2| | 2| cos(x) 2*x*sin(x) \ -3 + x / \ -3 + x / - ------ + ---------- + ----------------------- - ------------------------- 3 2 2 2 -3 + x -3 + x / 2\ \-3 + x / --------------------------------------------------------------------------- 2 -3 + x