sin(x) -------- 2 3*x - 9
sin(x)/(3*x^2 - 9)
Apply the quotient rule, which is:
and .
To find :
The derivative of sine is cosine:
To find :
Differentiate term by term:
The derivative of the constant is zero.
The derivative of a constant times a function is the constant times the derivative of the function.
Apply the power rule: goes to
So, the result is:
The result is:
Now plug in to the quotient rule:
Now simplify:
The answer is:
cos(x) 6*x*sin(x)
-------- - -----------
2 2
3*x - 9 / 2 \
\3*x - 9/
/ 2 \
| 4*x |
2*|-1 + -------|*sin(x)
| 2|
4*x*cos(x) \ -3 + x /
-sin(x) - ---------- + -----------------------
2 2
-3 + x -3 + x
----------------------------------------------
/ 2\
3*\-3 + x /
/ 2 \ / 2 \
| 4*x | | 2*x |
2*|-1 + -------|*cos(x) 8*x*|-1 + -------|*sin(x)
| 2| | 2|
cos(x) 2*x*sin(x) \ -3 + x / \ -3 + x /
- ------ + ---------- + ----------------------- - -------------------------
3 2 2 2
-3 + x -3 + x / 2\
\-3 + x /
---------------------------------------------------------------------------
2
-3 + x