3/ _________\ sin \\/ 4*x - 1 /
sin(sqrt(4*x - 1))^3
Let .
Apply the power rule: goes to
Then, apply the chain rule. Multiply by :
Let .
The derivative of sine is cosine:
Then, apply the chain rule. Multiply by :
Let .
Apply the power rule: goes to
Then, apply the chain rule. Multiply by :
Differentiate term by term:
The derivative of a constant times a function is the constant times the derivative of the function.
Apply the power rule: goes to
So, the result is:
The derivative of the constant is zero.
The result is:
The result of the chain rule is:
The result of the chain rule is:
The result of the chain rule is:
Now simplify:
The answer is:
2/ _________\ / _________\ 6*sin \\/ 4*x - 1 /*cos\\/ 4*x - 1 / ------------------------------------ _________ \/ 4*x - 1
/ 2/ __________\ 2/ __________\ / __________\ / __________\\ | sin \\/ -1 + 4*x / 2*cos \\/ -1 + 4*x / cos\\/ -1 + 4*x /*sin\\/ -1 + 4*x /| / __________\ 12*|- ------------------ + -------------------- - -----------------------------------|*sin\\/ -1 + 4*x / | -1 + 4*x -1 + 4*x 3/2 | \ (-1 + 4*x) /
/ 3/ __________\ 3/ __________\ 2/ __________\ / __________\ 2/ __________\ / __________\ 2/ __________\ / __________\\ |2*cos \\/ -1 + 4*x / 3*sin \\/ -1 + 4*x / 7*sin \\/ -1 + 4*x /*cos\\/ -1 + 4*x / 6*cos \\/ -1 + 4*x /*sin\\/ -1 + 4*x / 3*sin \\/ -1 + 4*x /*cos\\/ -1 + 4*x /| 24*|-------------------- + -------------------- - -------------------------------------- - -------------------------------------- + --------------------------------------| | 3/2 2 3/2 2 5/2 | \ (-1 + 4*x) (-1 + 4*x) (-1 + 4*x) (-1 + 4*x) (-1 + 4*x) /