Mister Exam

Other calculators

Derivative of sin^3(sqrt(4x-1))

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
   3/  _________\
sin \\/ 4*x - 1 /
$$\sin^{3}{\left(\sqrt{4 x - 1} \right)}$$
sin(sqrt(4*x - 1))^3
Detail solution
  1. Let .

  2. Apply the power rule: goes to

  3. Then, apply the chain rule. Multiply by :

    1. Let .

    2. The derivative of sine is cosine:

    3. Then, apply the chain rule. Multiply by :

      1. Let .

      2. Apply the power rule: goes to

      3. Then, apply the chain rule. Multiply by :

        1. Differentiate term by term:

          1. The derivative of a constant times a function is the constant times the derivative of the function.

            1. Apply the power rule: goes to

            So, the result is:

          2. The derivative of the constant is zero.

          The result is:

        The result of the chain rule is:

      The result of the chain rule is:

    The result of the chain rule is:

  4. Now simplify:


The answer is:

The graph
The first derivative [src]
     2/  _________\    /  _________\
6*sin \\/ 4*x - 1 /*cos\\/ 4*x - 1 /
------------------------------------
              _________             
            \/ 4*x - 1              
$$\frac{6 \sin^{2}{\left(\sqrt{4 x - 1} \right)} \cos{\left(\sqrt{4 x - 1} \right)}}{\sqrt{4 x - 1}}$$
The second derivative [src]
   /     2/  __________\        2/  __________\      /  __________\    /  __________\\                  
   |  sin \\/ -1 + 4*x /   2*cos \\/ -1 + 4*x /   cos\\/ -1 + 4*x /*sin\\/ -1 + 4*x /|    /  __________\
12*|- ------------------ + -------------------- - -----------------------------------|*sin\\/ -1 + 4*x /
   |       -1 + 4*x              -1 + 4*x                              3/2           |                  
   \                                                         (-1 + 4*x)              /                  
$$12 \left(- \frac{\sin^{2}{\left(\sqrt{4 x - 1} \right)}}{4 x - 1} + \frac{2 \cos^{2}{\left(\sqrt{4 x - 1} \right)}}{4 x - 1} - \frac{\sin{\left(\sqrt{4 x - 1} \right)} \cos{\left(\sqrt{4 x - 1} \right)}}{\left(4 x - 1\right)^{\frac{3}{2}}}\right) \sin{\left(\sqrt{4 x - 1} \right)}$$
The third derivative [src]
   /     3/  __________\        3/  __________\        2/  __________\    /  __________\        2/  __________\    /  __________\        2/  __________\    /  __________\\
   |2*cos \\/ -1 + 4*x /   3*sin \\/ -1 + 4*x /   7*sin \\/ -1 + 4*x /*cos\\/ -1 + 4*x /   6*cos \\/ -1 + 4*x /*sin\\/ -1 + 4*x /   3*sin \\/ -1 + 4*x /*cos\\/ -1 + 4*x /|
24*|-------------------- + -------------------- - -------------------------------------- - -------------------------------------- + --------------------------------------|
   |             3/2                     2                              3/2                                       2                                       5/2             |
   \   (-1 + 4*x)              (-1 + 4*x)                     (-1 + 4*x)                                (-1 + 4*x)                              (-1 + 4*x)                /
$$24 \left(\frac{3 \sin^{3}{\left(\sqrt{4 x - 1} \right)}}{\left(4 x - 1\right)^{2}} - \frac{6 \sin{\left(\sqrt{4 x - 1} \right)} \cos^{2}{\left(\sqrt{4 x - 1} \right)}}{\left(4 x - 1\right)^{2}} - \frac{7 \sin^{2}{\left(\sqrt{4 x - 1} \right)} \cos{\left(\sqrt{4 x - 1} \right)}}{\left(4 x - 1\right)^{\frac{3}{2}}} + \frac{2 \cos^{3}{\left(\sqrt{4 x - 1} \right)}}{\left(4 x - 1\right)^{\frac{3}{2}}} + \frac{3 \sin^{2}{\left(\sqrt{4 x - 1} \right)} \cos{\left(\sqrt{4 x - 1} \right)}}{\left(4 x - 1\right)^{\frac{5}{2}}}\right)$$