4/ 2 \ sin \3*x - 2/
d / 4/ 2 \\ --\sin \3*x - 2// dx
Let .
Apply the power rule: goes to
Then, apply the chain rule. Multiply by :
Let .
The derivative of sine is cosine:
Then, apply the chain rule. Multiply by :
Differentiate term by term:
The derivative of a constant times a function is the constant times the derivative of the function.
Apply the power rule: goes to
So, the result is:
The derivative of the constant is zero.
The result is:
The result of the chain rule is:
The result of the chain rule is:
Now simplify:
The answer is:
3/ 2 \ / 2 \ 24*x*sin \3*x - 2/*cos\3*x - 2/
2/ 2\ / / 2\ / 2\ 2 2/ 2\ 2 2/ 2\\ 24*sin \-2 + 3*x /*\cos\-2 + 3*x /*sin\-2 + 3*x / - 6*x *sin \-2 + 3*x / + 18*x *cos \-2 + 3*x //
/ 3/ 2\ 2/ 2\ / 2\ 2 3/ 2\ 2 2/ 2\ / 2\\ / 2\ 432*x*\- sin \-2 + 3*x / + 3*cos \-2 + 3*x /*sin\-2 + 3*x / + 12*x *cos \-2 + 3*x / - 20*x *sin \-2 + 3*x /*cos\-2 + 3*x //*sin\-2 + 3*x /