Mister Exam

Other calculators


sin^4(3x^2-2)

Derivative of sin^4(3x^2-2)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
   4/   2    \
sin \3*x  - 2/
$$\sin^{4}{\left(3 x^{2} - 2 \right)}$$
d /   4/   2    \\
--\sin \3*x  - 2//
dx                
$$\frac{d}{d x} \sin^{4}{\left(3 x^{2} - 2 \right)}$$
Detail solution
  1. Let .

  2. Apply the power rule: goes to

  3. Then, apply the chain rule. Multiply by :

    1. Let .

    2. The derivative of sine is cosine:

    3. Then, apply the chain rule. Multiply by :

      1. Differentiate term by term:

        1. The derivative of a constant times a function is the constant times the derivative of the function.

          1. Apply the power rule: goes to

          So, the result is:

        2. The derivative of the constant is zero.

        The result is:

      The result of the chain rule is:

    The result of the chain rule is:

  4. Now simplify:


The answer is:

The graph
The first derivative [src]
        3/   2    \    /   2    \
24*x*sin \3*x  - 2/*cos\3*x  - 2/
$$24 x \sin^{3}{\left(3 x^{2} - 2 \right)} \cos{\left(3 x^{2} - 2 \right)}$$
The second derivative [src]
      2/        2\ /   /        2\    /        2\      2    2/        2\       2    2/        2\\
24*sin \-2 + 3*x /*\cos\-2 + 3*x /*sin\-2 + 3*x / - 6*x *sin \-2 + 3*x / + 18*x *cos \-2 + 3*x //
$$24 \left(- 6 x^{2} \sin^{2}{\left(3 x^{2} - 2 \right)} + 18 x^{2} \cos^{2}{\left(3 x^{2} - 2 \right)} + \sin{\left(3 x^{2} - 2 \right)} \cos{\left(3 x^{2} - 2 \right)}\right) \sin^{2}{\left(3 x^{2} - 2 \right)}$$
The third derivative [src]
      /     3/        2\        2/        2\    /        2\       2    3/        2\       2    2/        2\    /        2\\    /        2\
432*x*\- sin \-2 + 3*x / + 3*cos \-2 + 3*x /*sin\-2 + 3*x / + 12*x *cos \-2 + 3*x / - 20*x *sin \-2 + 3*x /*cos\-2 + 3*x //*sin\-2 + 3*x /
$$432 x \left(- 20 x^{2} \sin^{2}{\left(3 x^{2} - 2 \right)} \cos{\left(3 x^{2} - 2 \right)} + 12 x^{2} \cos^{3}{\left(3 x^{2} - 2 \right)} - \sin^{3}{\left(3 x^{2} - 2 \right)} + 3 \sin{\left(3 x^{2} - 2 \right)} \cos^{2}{\left(3 x^{2} - 2 \right)}\right) \sin{\left(3 x^{2} - 2 \right)}$$
The graph
Derivative of sin^4(3x^2-2)