8/ 3 \ sin \3*x - 5*x/
d / 8/ 3 \\ --\sin \3*x - 5*x// dx
Let .
Apply the power rule: goes to
Then, apply the chain rule. Multiply by :
Let .
The derivative of sine is cosine:
Then, apply the chain rule. Multiply by :
Differentiate term by term:
The derivative of a constant times a function is the constant times the derivative of the function.
Apply the power rule: goes to
So, the result is:
The derivative of a constant times a function is the constant times the derivative of the function.
The derivative of a constant times a function is the constant times the derivative of the function.
Apply the power rule: goes to
So, the result is:
So, the result is:
The result is:
The result of the chain rule is:
The result of the chain rule is:
Now simplify:
The answer is:
7/ 3 \ / 2\ / 3 \ 8*sin \3*x - 5*x/*\-5 + 9*x /*cos\3*x - 5*x/
/ 2 2 \ 6/ / 2\\ | / 2\ 2/ / 2\\ / 2\ 2/ / 2\\ / / 2\\ / / 2\\| 8*sin \x*\-5 + 3*x //*\- \-5 + 9*x / *sin \x*\-5 + 3*x // + 7*\-5 + 9*x / *cos \x*\-5 + 3*x // + 18*x*cos\x*\-5 + 3*x //*sin\x*\-5 + 3*x ///
/ 3 3 \ 5/ / 2\\ | 2/ / 2\\ / / 2\\ / 2\ 3/ / 2\\ 3/ / 2\\ / 2\ / 2\ 2/ / 2\\ / / 2\\ 2/ / 2\\ / 2\ / / 2\\| 16*sin \x*\-5 + 3*x //*\9*sin \x*\-5 + 3*x //*cos\x*\-5 + 3*x // + 21*\-5 + 9*x / *cos \x*\-5 + 3*x // - 27*x*sin \x*\-5 + 3*x //*\-5 + 9*x / - 11*\-5 + 9*x / *sin \x*\-5 + 3*x //*cos\x*\-5 + 3*x // + 189*x*cos \x*\-5 + 3*x //*\-5 + 9*x /*sin\x*\-5 + 3*x ///