Detail solution
-
Let .
-
Apply the power rule: goes to
-
Then, apply the chain rule. Multiply by :
-
The derivative of sine is cosine:
The result of the chain rule is:
The answer is:
The first derivative
[src]
$$8 \sin^{7}{\left(x \right)} \cos{\left(x \right)}$$
The second derivative
[src]
6 / 2 2 \
8*sin (x)*\- sin (x) + 7*cos (x)/
$$8 \left(- \sin^{2}{\left(x \right)} + 7 \cos^{2}{\left(x \right)}\right) \sin^{6}{\left(x \right)}$$
The third derivative
[src]
5 / 2 2 \
16*sin (x)*\- 11*sin (x) + 21*cos (x)/*cos(x)
$$16 \left(- 11 \sin^{2}{\left(x \right)} + 21 \cos^{2}{\left(x \right)}\right) \sin^{5}{\left(x \right)} \cos{\left(x \right)}$$