The second derivative
[src]
/ 2 2 \
| / 2 \ -x -x |
|/ 2 \ 2*\1 + tan (x)/*e 2*x*e *tan(x)|
2*|\1 + tan (x)/*erf(x)*tan(x) + -------------------- - ---------------|
| ____ ____ |
\ \/ pi \/ pi /
$$2 \left(- \frac{2 x e^{- x^{2}} \tan{\left(x \right)}}{\sqrt{\pi}} + \left(\tan^{2}{\left(x \right)} + 1\right) \tan{\left(x \right)} \operatorname{erf}{\left(x \right)} + \frac{2 \left(\tan^{2}{\left(x \right)} + 1\right) e^{- x^{2}}}{\sqrt{\pi}}\right)$$
The third derivative
[src]
/ 2 2 2 \
| / 2 \ -x / 2\ -x / 2 \ -x |
|/ 2 \ / 2 \ 6*x*\1 + tan (x)/*e 2*\-1 + 2*x /*e *tan(x) 6*\1 + tan (x)/*e *tan(x)|
2*|\1 + tan (x)/*\1 + 3*tan (x)/*erf(x) - ---------------------- + ------------------------- + ---------------------------|
| ____ ____ ____ |
\ \/ pi \/ pi \/ pi /
$$2 \left(- \frac{6 x \left(\tan^{2}{\left(x \right)} + 1\right) e^{- x^{2}}}{\sqrt{\pi}} + \frac{2 \left(2 x^{2} - 1\right) e^{- x^{2}} \tan{\left(x \right)}}{\sqrt{\pi}} + \left(\tan^{2}{\left(x \right)} + 1\right) \left(3 \tan^{2}{\left(x \right)} + 1\right) \operatorname{erf}{\left(x \right)} + \frac{6 \left(\tan^{2}{\left(x \right)} + 1\right) e^{- x^{2}} \tan{\left(x \right)}}{\sqrt{\pi}}\right)$$